Revisión de los Efectos del Tratamiento con Agonistas y Antagonistas de Receptores de Cannabinoides en un Modelo de Periodontitis Experimental

Autores/as

  • C A Ossola Universidad de Buenos Aires. Facultad de Odontología. Cátedra de Fisiología. Buenos Aires, Argentina. / CONICET. Buenos Aires, Argentina
  • N B Balcarcel Universidad de Buenos Aires. Facultad de Odontología. Cátedra de Fisiología. Buenos Aires, Argentina.
  • C E Mohn Universidad de Buenos Aires. Facultad de Odontología. Cátedra de Fisiología. Buenos Aires, Argentina. / CONICET. Buenos Aires, Argentina
  • J C Elverdin Universidad de Buenos Aires. Facultad de Odontología. Cátedra de Fisiología. Buenos Aires, Argentina.
  • J Fernandez-Solari Universidad de Buenos Aires. Facultad de Odontología. Cátedra de Fisiología. Buenos Aires, Argentina.

Palabras clave:

periodontitis, endocannabinoides, agonistas de receptores de cannabinoides, antagonistas de receptores de cannabinoides, osteoprotección

Resumen

La periodontitis es una enfermedad inflamatoria crónica que provoca daños sobre los tejidos periodontales y puede llevar a la pérdida de piezas dentarias. Si bien la enfermedad normalmente se inicia por la acumulación de placa bacteriana, que produce efectos nocivos sobre los tejidos, su patogénesis se ve potenciada por varias condiciones individuales entre las que se destaca la propia respuesta inmune/inflamatoria del hospedador, que es capaz de causar efectos deletéreos irreversibles sobre los tejidos de soporte y protección dentaria. La periodontitis, en todas sus formas, requiere de intervención odontológica periódica y de un enfoque multifactorial, por lo tanto, la comunidad científica está ampliamente dedicada a la búsqueda de métodos coadyuvantes que acompañen el tratamiento de la placa bacteriana y la eliminación del cálculo, con el fin de mejorar las condiciones de salud de los pacientes que padecen esta patología de alta incidencia. Las respuestas antiinflamatorias y osteoprotectoras desencadenadas por activación de receptores de cannabinoides en distintos tejidos han llevado a nuestro grupo de investigación a estudiar al sistema endocannabinoide como potencial blanco terapéutico para tratar la periodontitis. En este trabajo se revisan y discuten los resultados obtenidos hasta el momento en modelos experimentales.

Citas

Abadji V, Lin S, Taha G, Griffin G, Stevenson LA, Pertwee RG y Makriyannis A. (1994). (R)-methanandamide: a chiral novel anandamide possessing higher potency and metabolic stability. J Med Chem, 37(12), 1889–1893. https://doi.org/10.1021/jm00038a020

Ahn K, McKinney MK y Cravatt BF. (2008). Enzymatic pathways that regulate endocannabinoid signaling in the nervous system. Chem Rev, 108(5), 1687–1707. https://doi.org/10.1021/cr0782067

Alexander JP y Cravatt BF. (2005). Mechanism of carbamate inactivation of FAAH: implications for the design of covalent inhibitors and in vivo functional probes for enzymes. Chem Biol, 12(11), 1179–1187. https://doi.org/10.1016/j.chembiol.2005.08.011

Ambrósio LM, Rovai ES, França BN, et al. (2017). Effects of periodontal treatment on primary sjögren’s syndrome symptoms. Braz Oral Res, 16(31): e8. https://doi.org/10.1590/1807-3107BOR-2017.vol31.0008

Bab I y Zimmer A. (2008). Cannabinoid receptors and the regulation of bone mass. Br J Pharmacol, 153(2),182–188. https://doi.org/10.1038/sj.bjp.0707593

Bohlen CJ, Priel A, Zhou S, King D, Siemens J y Julius D. (2010), A bivalent tarantula toxin activates the capsaicin receptor, TRPV1, by targeting the outer pore domain. Cell, 141(5), 834–845. https://doi.org/10.1016/j.cell.2010.03.052

Brennan PA, Thomas GJ y Langdon JD. (2003). The role of nitric oxide in oral diseases. Arch Oral Biol, 48(2), 93–100. https://doi.org/10.1016/s0003-9969(02)00183-8

Cui M, Honore P, Zhong C, et al. (2006). TRPV1 receptors in the CNS play a key role in broad-spectrum analgesia of TRPV1 antagonists. J Neurosci, 26(37), 9385–9393. https://doi.org/10.1523/JNEUROSCI.1246-06.2006

Davé S y Van Dyke T. (2008). The link between periodontal disease and cardiovascular disease is probably inflammation. Oral Dis, 14(2), 95–101. https://doi.org/10.1111/j.1601-0825.2007.01438.x

De Filippis D, D’Amico A, Cipriano M, et al. (2010). Levels of endocannabinoids and palmitoylethanolamide and their pharmacological manipulation in chronic granulomatous inflammation in rats. Pharmacol Res, 61(4), 321–328. https://doi.org/10.1016/j.phrs.2009.11.005

Fernandez-Solari J, Prestifilippo JP, Ossola CA, Rettori V y Elverdin JC. (2010). Participation of the endocannabinoid system in lipopolysaccharide-induced inhibition of salivary secretion. Arch Oral Biol, 55(8), 583–590. https://doi.org/10.1016/j.archoralbio.2010.05.006

Fine PG y Rosenfeld MJ. (2013). The endocannabinoid system, cannabinoids, and pain. Rambam Maimonides Med J, 4(4), e0022. https://doi.org/10.5041/RMMJ.10129

Iadarola MJ, Sapio MR, Raithel SJ, Mannes AJ y Brown DC. (2018). Long-term pain relief in canine osteoarthritis by a single intraarticular injection of resiniferatoxin, a potent TRPV1 agonist. Pain, 159(10), 2105–2114. https://doi.org/10.1097/j.pain.0000000000001314

Kohnz RA y Nomura DK. (2014). Chemical approaches to therapeutically target the metabolism and signaling of the endocannabinoid 2-AG and eicosanoids. Chem Soc Rev, 43(19), 6859–6869. https://doi.org/10.1039/c4cs00047a

Konermann A, Jäger A, Held SAE, Brossart P y Schmöle A. (2017). In vivo and in vitro identification of endocannabinoid signaling in periodontal tissues and their potential role in local pathophysiology. Cell Mol Neurobiol, 37(8), 1511–1520. https://doi.org/10.1007/s10571-017-0482-4

Kozono S, Matsuyama T, Biwasa KK, et al. (2010). Involvement of the endocannabinoid system in periodontal healing. Biochem Biophys Res Commun, 394(4), 928–933. https://doi.org/10.1016/j.bbrc.2010.03.080

Lacey DL, Timms E, Tan HL, et al. (1998). Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 93(2), 165–176. https://doi.org/10.1016/s0092-8674(00)81569-x

Lappin DF, Kjeldsen M, Sander L y Kinane DF. (2000). Inducible nitric oxide synthase expression in periodontitis. J Periodontal Res, 35(6), 369–373. https://doi.org/10.1034/j.1600-0765.2000.035006369.x

Leonard MZ, Alapafuja SO, Ji L, et al. (2017). Cannabinoid CB1 Discrimination: Effects of Endocannabinoids and Catabolic Enzyme Inhibitors. J Pharmacol Exp Ther, 363(3), 314–323. https://doi.org/10.1124/jpet.117.244392

Liu C, Qi X, Yang D, Neely A y Zhou Z. (2019). The effects of cannabis use on oral health. Oral Dis, Dec 2, 1–9. https://doi.org/10.1111/odi.13246

Llavaneras A, Ramamurthy NS, Heikkilä P, et al. (2001). A combination of a chemically modified doxycycline and a bisphosphonate synergistically inhibits endotoxin-induced periodontal breakdown in rats. J Periodontol, 72(8), 1069–1077. https://doi.org/10.1902/jop.2001.72.8.1069

López-González MJ, Luis E, Fajardo O, et al. (2017). TRPA1 channels mediate human gingival fibroblast response to phenytoin. J Dent Res, 96(7), 832–839. https://doi.org/10.1177/0022034517695518

Lozano-Ondoua AN, Wright C, Vardanyan A, et al. (2010). A cannabinoid 2 receptor agonist attenuates bone cancer-induced pain and bone loss. Life Sci, 86(17-18), 646–653. https://doi.org/10.1016/j.lfs.2010.02.014

Mlost J, Kostrzewa M, Malek N y Starowicz K. (2018). Molecular understanding of the activation of CB1 and blockade of TRPV1 receptors: implications for novel treatment strategies in osteoarthritis. Int J Mol Sci, 19(2), 342. https://doi.org/10.3390/ijms19020342

Nagarkatti P, Pandey R, Rieder SA, Hegde VL y Nagarkatti M. (2009). Cannabinoids as novel antiinflammatory drugs. Future Med Chem, 1(7), 1333–1349. https://doi.org/10.4155/fmc.09.93

Nagasawa T, Kiji M, Yashiro R, et al. (2007). Roles of receptor activator of nuclear factor-KB ligand (RANKL) and osteoprotegerin in periodontal health and disease. Periodontol 2000, 43(1), 65–84. https://doi.org/10.1111/j.1600-0757.2006.00185.x

Nakajima Y, Furuichi Y, Biswas KK, et al. (2006). Endocannabinoid, anandamide in gingival tissue regulates the periodontal inflammation through NFkappaB pathway inhibition. FEBS Lett, 580(2), 613–619. https://doi.org/10.1016/j.febslet.2005.12.079

Napimoga MH, Benatti BB, Lima FO, et al. (2009). Cannabidiol decreases bone resorption by inhibiting RANK/RANKL expression and pro-inflammatory cytokines during experimental periodontitis in rats. Int Immunopharmacol, 9(2), 216–222. https://doi.org/10.1016/j.intimp.2008.11.010

O´Gradaigh D, Ireland D, Bord S y Compston JE. (2004). Joint erosion in rheumatoid arthritis: interactions between tumour necrosis factor α, interleukin 1, and receptor activator of nuclear factor KB ligand (RANKL) regulate osteoclasts. Ann Rheum Dis, 63(4), 354–359. https://doi.org/10.1136/ard.2003.008458

Offenbacher S, Heasman PA y Collins JG. (1993). Modulation of host PGE2 secretion as a determinant of periodontal disease expression. J Periodontol, 64(5 Suppl), 432–444. https://doi.org/10.1902/jop.1993.64.5s.432

Ossola CA, Surkin PN, Pugnaloni A, Mohn CE, Elverdin JC y Fernandez-Solari J. (2012). Long-term treatment with methanandamide attenuates LPS-induced periodontitis in rats. Inflamm Res, 61(9), 941–948. https://doi.org/10.1007/s00011-012-0485-z

Ossola CA, Surkin PN, Mohn CE, Elverdin JC y Fernández-Solari J. (2016). Anti-inflammatory and osteoprotective effects of cannabinoid-2 receptor agonist HU-308 in a rat model of lipopolysaccharideinduced periodontitis. J Periodontol, 87(6), 725–734. https://doi.org/10.1902/jop.2016.150612

Ossola CA, Balcarcel NB, Astrauskas JI, Bozzini C, Elverdin JC y Fernández-Solari J. (2019). A new target to ameliorate the damage of periodontal disease: The role of transient receptor potential vanilloid type-1 in contrast to that of specific cannabinoid receptors in rats. J Periodontol, 90(11), 1325–1335. https://doi.org/10.1002/JPER.18-0766

Özdemir B, Shi B, Bantleon HP, Moritz A, RauschFan X y Andrukhov O. (2014). Endocannabinoids and inflammatory response in periodontal ligament cells. PLoS One, 9(9), e107407. https://doi.org/10.1371/journal.pone.0107407

Oztürk A y Yildiz L. (2011). Expression of transient receptor potential vanilloid receptor 1 and toll-like receptor 4 in aggressive periodontitis and in chronic periodontitis. J Periodontal Res, 46(4), 475–482. https://doi.org/10.1111/j.1600-0765.2011.01363.x

Page RC. (1991). The role of inflammatory mediators in the pathogenesis of periodontal disease. J Periodontal Res, 26(3 Pt 2), 230–242. https://doi.org/10.1111/j.1600-0765.1991.tb01649.x

Pan B, Wang W, Long JZ, Sun D, Hillard CJ, Cravatt BF y Liu QS. (2009). Blockade of 2-arachidonoylglycerol hydrolysis by selective monoacylglycerol lipase inhibitor 4-nitrophenyl 4-(dibenzo[d][1,3] dioxol-5-yl (hydroxy) methyl) piperidine-1-carboxylate (JZL184) Enhances retrograde endocannabinoid signaling. J Pharmacol Exp Ther, 331(2), 591–597. https://doi.org/10.1124/jpet.109.158162

Park JE, Abrams MJ, Efron PA y Barbul A. (2013). Excessive nitric oxide impairs wound collagen accumulation. J Surg Res, 183(1), 487–492. https://doi.org/10.1016/j.jss.2012.11.056

Preshaw PM y Heasman PA. (2002). Prostaglandin E2 concentrations in gingival crevicular fluid: observations in untreated chronic periodontitis. J Clin Periodontol, 29(1), 15–20. https://doi.org/10.1034/j.1600-051x.2002.290103.x

Prestifilippo JP, Fernández-Solari J, de la Cal C, Iribarne M, Suburo AM, Rettori V, McCann SM y Elverdin JC. (2006). Inhibition of salivary secretion by activation of cannabinoid receptors. Exp Biol Med (Maywood), 231(8), 1421–1429. https://doi.org/10.1177/153537020623100816

Pussinen PJ, Tuomisto K, Jousilahti P, Havulinna AS, Sundvall J y Salomaa V. (2007). Endotoxemia, immune response to periodontal pathogens, and systemic inflammation associate with incident cardiovascular disease events. Arterioscler Thromb Vasc Biol, 27(6), 1433–1439. https://doi.org/10.1161/ATVBAHA.106.138743

Qian H, Zhao Y, Peng Y, et al. (2010). Activation of cannabinoid receptor CB2 regulates osteogenic and osteoclastogenic gene expression in human periodontal ligament cells. J Periodontal Res, 45(4), 504–511. https://doi.org/10.1111/j.1600-0765.2009.01265.x

Rawal SY, Dabbous MK y Tipton DA. (2012). Effect of cannabidiol on human gingival fibroblast extracellular matrix metabolism: MMP production and activity, and production of fibronectin and transforming growth factor β. J Periodontal Res, 47(3), 320–329. https://doi.org/10.1111/j.1600-0765.2011.01435.x

Rettori E, De Laurentiis A, Zorrilla Zubilete M, Rettori V y Elverdin JC. (2012). Anti-inflammatory effect of the endocannabinoid anandamide in experimental periodontitis and stress in the rat. Neuroimmunomodulation, 19(5), 293–303. https://doi.org/10.1159/000339113

Roberts F, McCaffery K y Michalek S. (1997). Profile of cytokine mRNA expression in chronic adult periodontitis. J Dent Res, 76(12), 1833–1839. https://doi.org/10.1177/00220345970760120501

Saura M, Tarin C y Zaragoza C. (2010). Recent insights into the implication of nitric oxide in osteoblast differentiation and proliferation during bone development. ScientificWorldJournal, 10, 624–632. https://doi.org/10.1100/tsw.2010.58

Shoji M, Tanabe N, Mitsui N, et al. (2007). Lipopolysaccharide enhances the production of nicotine-induced prostaglandin E2 by an increase in cyclooxygenase-2 expression in osteoblasts. Acta Biochim Biophys Sin (Shanghai), 39(3), 163–172. https://doi.org/10.1111/j.1745-7270.2007.00271.x

Slots J. (2017). Periodontitis: facts, fallacies and the future. Periodontol 2000, 75(1), 7–23. https://doi.org/10.1111/prd.12221

Son GY, Hong JH, Chang I y Shin DM. (2015). Induction of IL-6 and IL-8 by activation of thermosensitive TRP channels in human PDL cells. Arch Oral Biol, 60(4), 526–532. https://doi.org/10.1016/j.archoralbio.2014.12.014

Suda K, Udagawa N, Sato N, Takami M, Itoh K, et al. (2004). Suppression of osteoprotegerin expression by prostaglandin E2 is crucially involved in lipopolysaccharide-induced osteoclast formation. J Immunol, 172(4), 2504–2510. https://doi.org/10.4049/jimmunol.172.4.2504

Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT y Martin TJ. (1999). Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev, 20(3), 345–357. https://doi.org/10.1210/edrv.20.3.0367

Szabady RL, Louissaint C, Lubben A, et al. (2018). Intestinal P-glycoprotein exports endocannabinoids to prevent inflammation and maintain homeostasis. J Clin Invest, 128(9), 4044–4056. https://doi.org/10.1172/JCI96817

Szallasi A y Blumberg PM. (1999). Vanilloid (Capsaicin) receptors and mechanisms. Pharmacol Rev, 51(2), 159–212.

Udagawa N, Takahashi N, Jimi E, et al. (1999). Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/RANKL but not macrophage colony-stimulating factor. Bone, 25(5), 517–523. https://doi.org/10.1016/s8756-3282(99)00210-0

Van Der Stelt M y Di Marzo V. (2004). Endovanilloids. Putative endogenous ligands of transient receptor potential vanilloid 1 channels. Eur J Biochem, 271(10), 1827–1834. https://doi.org/10.1111/j.1432-1033.2004.04081.x

Wang L, Shi X, Zhao R, et al. (2010). Calcitonin-gene-related peptide stimulates stromal cell osteogenic differentiation and inhibits RANKL induced NF-kappaB activation, osteoclastogenesis and bone resorption. Bone, 46(5), 1369–1379. https://doi.org/10.1016/j.bone.2009.11.029

Descargas

Publicado

2021-09-27

Cómo citar

Ossola, C. A., Balcarcel, N. B., Mohn, C. E., Elverdin, J. C., & Fernandez-Solari, J. (2021). Revisión de los Efectos del Tratamiento con Agonistas y Antagonistas de Receptores de Cannabinoides en un Modelo de Periodontitis Experimental. Revista De La Facultad De Odontologia De La Universidad De Buenos Aires, 35(79), 29–41. Recuperado a partir de https://revista.odontologia.uba.ar/index.php/rfouba/article/view/43