Saliva y Reparación Tisular: Un Natural e Inexplorado Universo Terapéutico

Autores/as

  • G R Troncoso Universidad de Buenos Aires. Facultad de Odontología. Cátedra de Fisiología. Buenos Aires, Argentina.
  • N B Balcarcel Universidad de Buenos Aires. Facultad de Odontología. Cátedra de Fisiología. Buenos Aires, Argentina.
  • S G Allamprese Universidad de Buenos Aires. Facultad de Odontología. Cátedra de Fisiología. Buenos Aires, Argentina.
  • C E Mohn Universidad de Buenos Aires. Facultad de Odontología. Cátedra de Fisiología. Buenos Aires, Argentina. / CONICET. Buenos Aires, Argentina
  • J C Elverdin Universidad de Buenos Aires. Facultad de Odontología. Cátedra de Fisiología. Buenos Aires, Argentina.
  • C A Ossola Universidad de Buenos Aires. Facultad de Odontología. Cátedra de Fisiología. Buenos Aires, Argentina.

Palabras clave:

saliva, reparación de heridas, factores de crecimiento, mucosa, glándulas salivales

Resumen

Numerosas sustancias y actividades de la vida diaria representan un riesgo potencial de agresión para los tejidos de la cavidad bucal. Sin embargo, los tejidos bucales manifiestan una asombrosa capacidad de resiliencia y recuperación gracias, en gran medida, a la saliva, fluido producido por la acción conjunta de las glándulas salivales mayores y menores. A través de diversos estudios desarrollados a lo largo de los años, una gran cantidad de componentes activos, como los factores de crecimiento EGF, TGF-α, NGF, VEGF, entre otros, y sustancias como histatinas, parotina y factor tisular, han sido identificados en la saliva, exhibiendo funciones específicas sobre la reparación tisular. Este trabajo tiene como objetivo proporcionar una versión actualizada de la participación de las glándulas salivales y sus componentes de secreción en la reparación tisular y resaltar su influencia en el manejo clínico de lesiones bucales. Una amplia revisión de la bibliografía fue llevada a cabo con el fin de realizar un compilado de los elementos constituyentes de la saliva que, de acuerdo al conocimiento actual, poseen efectos directos o indirectos demostrados sobre los mecanismos de curación y mantenimiento de la salud de los tejidos bucales.

Citas

Aguilar-Cordero MJ, Sánchez-López AM, Mur Villar N, García-García I, Rodríguez-López MA, Ortegón-Piñero A y Cortes-Castell E. (2014). Cortisol salival como indicador de estrés fisiológico en niños y adultos; revisión sistemática. Nutr Hosp, 29(5), 960–68. https://doi.org/10.3305/nh.2014.29.5.7273

Aloe L, Rocco ML, Balzamino BO y Micera A. (2015). Nerve growth factor: a focus on neuroscience and therapy. Curr Neuropharmacol, 13(3), 294–303. https://doi.org/10.2174/1570159x13666150403231920

Alves JB, Ferreira CL, Martins AF, Silva GA, Alves GD, Paulino TP, Ciancaglini P, Thedei G Jr y Napimoga MH. (2009). Local delivery of EGF-liposome mediated bone modeling in orthodontic tooth movement by increasing RANKL expression. Life Sci, 85(19–20), 693–99. https://doi.org/10.1016/j.lfs.2009.09.010

Amini AA y Nair LS. (2014). Recombinant human lactoferrin as a biomaterial for bone tissue engineering: mechanism of antiapoptotic and osteogenic activity. Adv Healthc Mater, 3(6), 897–905. https://doi.org/10.1002/adhm.201300496

Azuma N, Katada Y, Kitano S, Nishioka A, Sekiguchi M, Kitano M, Hashimoto N, Matsui K, Iwasaki T y Sano H. (2016). Salivary epidermal growth factor (EGF) in Sjögren’s syndrome: association between salivary EGF levels and the severity of intraoral manifestations. Jpn J Clin Immunol, 39(1), 42–50. https://doi.org/10.2177/jsci.39.42

Azuma N, Katada Y y Sano H. (2018). Deterioration in saliva quality in patients with Sjögren’s syndrome: impact of decrease in salivary epidermal growth factor on the severity of intraoral manifestations. Inflamm Regen, 38, 6. https://doi.org/10.1186/s41232-018-0062-0

Bandelow B, Wedekind D, Pauls J, Broocks A, Hajak G y Rüther E. (2000). Salivary cortisol in panic attacks. Am J Psychiatry, 157(3), 454–456. https://doi.org/10.1176/appi.ajp.157.3.454

Barrientos S, Stojadinovic O, Golinko M, Brem H y Tomic-Canic M. (2008). Growth factors and cytokines in wound healing. Wound Repair Regen, 16(5), 585–601. https://doi.org/10.1111/j.1524-475X.2008.00410.x

Berckmans RJ, Sturk A, van Tienen LM, Schaap MC y Nieuwland R. (2011). Cell-derived vesicles exposing coagulant tissue factor in saliva. Blood, 117(11), 3172–3180. https://doi.org/10.1182/blood-2010-06-290460

Bhadbhade SJ, Acharya AB y Thakur SL. (2013). Salivary and gingival crevicular fluid histatin in periodontal health and disease. J Clin Exp Dent, 5(4), e174–e178. https://doi.org/10.4317/jced.51106

Bitar MS y Labbad ZN. (1996). Transforming growth factor-β and insulin-like growth factor-I in relation to diabetes-induced impairment of wound healing. J Surg Res, 61(1), 113–119. https://doi.org/10.1006/jsre.1996.0090

Błochowiak K, Sokalski J, Golusińska E, Trzybulska D, Witmanowski H, Bodnar M y Marszałek A. (2019). Salivary levels and immunohistochemical expression of selected angiogenic factors in benign and malignant parotid gland tumours. Clin Oral Investig, 23(3), 995–1006. https://doi.org/10.1007/s00784-018-2524-9

Blotnick E, Sol A, Bachrach G y Muhlrad A. (2017). Interactions of histatin-3 and histatin-5 with actin. BMC Biochem, 18(1), 3. https://doi.org/10.1186/s12858-017-0078-0

Brand HS, Ligtenberg AJ y Veerman EC. (2014). Saliva and wound healing. Monogr Oral Sci, 24, 52–60. https://doi.org/10.1159/000358784

Bruno MA y Cuello AC. (2006). Activity-dependent release of precursor nerve growth factor, conversion to mature nerve growth factor, and its degradation by a protease cascade. Proc Natl Acad Sci U S A, 103(17), 6735–6740. https://doi.org/10.1073/pnas.0510645103

Buckley A, Davidson JM, Kamerath CD y Woodward SC. (1987). Epidermal growth factor increases granulation tissue formation dose dependently. J Surg Res, 43(4), 322–328. https://doi.org/10.1016/0022-4804(87)90088-6

Burns VE, Ring C, Harrison LK, Carroll D y Drayson M. (2004). Reductions in secretory immunoglobulin A to cold pressor stress are not influenced by timing of saliva sampling. Biol Psychol, 66(1), 91–98. https://doi.org/10.1016/j.biopsycho.2003.07.001

Chang KM, Lehrhaupt N, Lin LM, Feng J, Wu-Wang CY y Wang SL. (1996). Epidermal growth factor in gingival crevicular fluid and its binding capacity in inflamed and non-inflamed human gingiva. Arch Oral Biol, 41(7), 719–724. https://doi.org/10.1016/s0003-9969(96)00024-6

Choudhary A, Smitha CN y Suresh DK. (2015). Trefoils: an unexplored natural protective shield of oral cavity. J Oral Biol Craniofac Res, 5(3), 226–231. https://doi.org/10.1016/j.jobcr.2015.06.009

Cohen S. (1962). Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J Biol Chem, 237(5), 1555–1562. https://www.jbc.org/content/237/5/1555.long

Conchillo M, Prieto J y Quiroga J. (2007). Factor de crecimiento semejante a la insulina tipo I (IGF-I) y cirrosis hepática [Insulin-like growth factor I (IGF-I) and liver cirrhosis]. Rev Esp Enferm Dig,

(3), 156–164. https://doi.org/10.4321/s1130-01082007000300007

Cooper MD, Roberts MH, Barauskas OL y Jarvis GA. (2012). Secretory leukocyte protease inhibitor binds to Neisseria gonorrhoeae outer membrane opacity protein and is bactericidal. Am J Reprod Immunol, 68(2), 116–127. https://doi.org/10.1111/j.1600-0897.2012.01149.x

Cordeiro MF, Reichel MB, Gay JA, D’Esposita F, Alexander RA y Khaw PT. (1999). Transforming growth factor-beta1, -beta2, and -beta3 in vivo: effects on normal and mitomycin C-modulated conjunctival scarring. Invest Ophthalmol Vis Sci, 40(9), 1975–1982. https://iovs.arvojournals.org/article.aspx?articleid=2123561

Costigan DC, Guyda HJ y Posner BI. (1988). Free insulin-like growth factor I (IGF-I) and IGF-II in human saliva. J Clin Endocrinol Metab, 66(5), 1014–1018. https://doi.org/10.1210/jcem-66-5-1014

Dawes C y Wood CM. (1973). The contribution of oral minor mucous gland secretions to the volume of whole saliva in man. Arch Oral Biol, 18(3), 337–342. https://doi.org/10.1016/0003-9969(73)90156-8

Derringer K y Linden R. (2007). Epidermal growth factor released in human dental pulp following orthodontic force. Eur J Orthod, 29(1), 67–71. https://doi.org/10.1093/ejo/cjl059

Di Vita G, Patti R, D’Agostino P, Caruso G, Arcara M, Buscemi S, Bonventre S, Ferlazzo V, Arcoleo F y Cillari E. (2006). Cytokines and growth factors in wound drainage fluid from patients undergoing incisional hernia repair. Wound Repair Regen, 14(3), 259–264. https://doi.org/10.1111/j.1743-6109.2006.00120.x

Doğan GE, Toraman A, Şebin SÖ, Doğan Ç, Güngör A, Aksoy H y Asutay H. (2016). Salivary IL-6 and IL-10 levels in subjects with obesity and gingivitis. Am J Dent, 29(5), 261–265.

Drannik AG, Henrick BM y Rosenthal KL. (2011). War and peace between WAP and HIV: role of SLPI, trappin-2, elafin and ps20 in susceptibility to HIV infection. Biochem Soc Trans, 39(5), 1427–1432. https://doi.org/10.1042/BST0391427

Ebrecht M, Hextall J, Kirtley LG, Taylor A, Dyson M y Weinman J. (2004). Perceived stress and cortisol levels predict speed of wound healing in healthy male adults. Psychoneuroendocrinology, 29(6), 798–809. https://doi.org/10.1016/S0306-4530(03)00144-6

Farnaud S y Evans RW. (2003). Lactoferrin-a multifunctional protein with antimicrobial properties. Mol Immunol, 40(7), 395–405. https://doi.org/10.1016/S0161-5890(03)00152-4

Fine DH. (2015). Lactoferrin: a roadmap to the borderland between caries and periodontal disease. J Dent Res, 94(6), 768–776. https://doi.org/10.1177/0022034515577413

Ganong WF. (2002). Fisiología médica. (18va ed.). Manual Moderno.

Glim JE, van Egmond M, Niessen FB, Everts V y Beelen RH. (2013). Detrimental dermal wound healing: what can we learn from the oral mucosa? Wound Repair Regen, 21(5), 648–660. https://doi.org/10.1111/wrr.12072

Gomez SA, Argüelles CL, Guerrieri D, Tateosian NL, Amiano NO, Slimovich R, Maffia PC, Abbate E, Musella RM, Garcia VE y Chuluyan HE. (2009). Secretory leukocyte protease inhibitor: a secreted pattern recognition receptor for mycobacteria. Am J Respir Crit Care Med, 179(3), 247–253. https://doi.org/10.1164/rccm.200804-615OC

González CR, Amer MA, Vitullo AD, González-Calvar SI y Vacas MI. (2016). Immunolocalization of the TGFB1 system in submandibular gland fibrosis after experimental periodontitis in rats. Acta Odontol Latinoam, 29(2), 138–143. http://www.scielo.org.ar/pdf/aol/v29n2/v29n2a06.pdf

Gorlin RJ. (1997). Fibroblast growth factors, their receptors and receptor disorders. J Craniomaxillofac Surg, 25(2), 69–79. https://doi.org/10.1016/s1010-5182(97)80048-0

Görmez U, Kürkcü M, E Benlidayi M, Ulubayram K, Sertdemir Y y Dağlioğlu K. (2015). Effects of bovine lactoferrin in surgically created bone defects on bone regeneration around implants. J Oral Sci, 57(1), 7–15. https://doi.org/10.2334/josnusd.57.7

Graycar JL, Miller DA, Arrick BA, Lyons RM, Moses HL y Derynck R. (1989). Human transforming growth factor-Β3: recombinant expression, purification, and biological activities in comparison with transforming growth factors-Β1 and -Β2. Mol Endocrinol, 3(12), 1977–1986. https://doi.org/10.1210/mend-3-12-1977

Gröschl M, Rauh M, Wagner R, et al. (2001). Identification of leptin in human saliva. J Clin Endocrinol Metab, 86(11), 5234–5239. https://doi.org/10.1210/jcem.86.11.7998

Grose R, Werner S, Kessler D, Tuckermann J, Huggel K, Durka S, Reichardt HM y Werner S. (2002). A role for endogenous glucocorticoids in wound repair. EMBO Rep, 3(6), 575–582. https://doi.org/10.1093/embo-reports/kvf119

Guang M, Huang B, Yao Y, Zhang L, Yang B y Gong P. (2017). Effects of vascular endothelial growth factor on osteoblasts around dental implants in vitro and in vivo. J Oral Sci, 59(2), 215–223. https://doi.org/10.2334/josnusd.16-0406

Gupta A, Tripathi A, Patil R, Kumar V, Khanna V y Singh V. (2019). Estimation of salivary and serum basic fibroblast growth factor in treated and untreated patients with oral squamous cell carcinoma. J Oral Biol Craniofac Res, 9(1), 19–23. https://doi.org/10.1016/j.jobcr.2018.08.005

Hart BL, Hart LA, Thigpen AP, Tran A y Bain MJ. (2018). The paradox of canine conspecific coprophagy. Vet Med Sci, 4(2), 106–114. https://doi.org/10.1002/vms3.92

Hashemipour MA, Fatah FS, Ashraf MJ y Tahmasebi M. (2016). Expression of human kallikreins 4, 8, 10, 11 and 13 in pleomorphic adenomas and mucoepidermoid carcinomas. Iran J Pathol, 11(4), 334–344. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5563931/

Hayashi K, Storesund T, Schreurs O, Khuu C, Husvik C, Karatsaidis A, Helgeland K, Martin-Zanca D y Schenck K. (2007). Nerve growth factor β/pro-nerve growth factor and their receptors in normal human oral mucosa. Eur J Oral Sci, 115(5), 344–354. https://doi.org/10.1111/j.1600-0722.2007.00480.x

Hayashi K, Karatsaidis A, Schreurs O, Bjørnland T, Sugisaki M y Schenck K. (2008). NGF and its receptors TrkA and p75NTR in the epithelium of oral lichen. J Oral Pathol Med, 37(4), 241–248. https://doi.org/10.1111/j.1600-0714.2007.00627.x

Hellweg R y Raivich G. (1994). Nerve growth factor: pathophysiological and therapeutic implications. Pharmacopsychiatry, 27(Suppl 1), 15–17. https://doi.org/10.1055/s-2007-1014319

Herbst RS y Sandler AB. (2004). Overview of the status of human epidermal growth factor receptor inhibitors in lung cancer. Clin Lung Cancer, 6(Suppl 1), s7–s19. https://doi.org/10.3816/clc.2004.s.009

Hiemstra PS, Maassen RJ, Stolk J, Heinzel-Wieland R, Steffens GJ y Dijkman JH. (1996). Antibacterial activity of antileukoprotease. Infect Immun, 64(11), 4520–4524. https://iai.asm.org/content/64/11/4520.long

Hiramatsu Y, Kagami H, Kosaki K, Shigetomi T, Ueda M, Kobayashi S y Sakanaka M. (1994). The localization of basic fibroblast growth factor (FGF-2) in rat submandibular glands. Nagoya J Med Sci, 57(3-4), 143–152. https://doi.org/10.18999/nagjms.57.3-4.143

Hoffman M. (2018). Tissue factor pathway and wound healing. Semin Thromb Hemost, 44(2). 142–50. https://doi.org/10.1055/s-0037-1606181

Hormia M, Thesleff I, Perheentupa J, Pesonen K y Saxén L. (1993). Increased rate of salivary epidermal growth factor secretion in patients with juvenile periodontitis. Scand J Dent Res, 101(3), 138–144. https://doi.org/10.1111/j.1600-0722.1993.tb01653.x

Huang EJ y Reichardt LF. (2003). Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem, 72(1), 609–642. https://doi.org/10.1146/annurev.biochem.72.121801.161629

Inayah N, Soesilo NP y Pratiwi R. (2017). Effect of Tokay Gecko (Gekko Gecko LINNAEUS, 1758) saliva on angiogenesis during wound healing phase of autotomized tail in common sun skink (Eutropis Multifasciata KUHL, 1820). Indonesian J Biol, 13(2), 253–260. https://www.neliti.com/publications/196333/effect-of-tokay-gecko-gekkogecko-linnaeus-1758-saliva-on-angiogenesisduring-wo#cite

Ito Y y Endo H. (1956). Studies on the salivary gland hormones in tissue culture. I. The effects of parotin on the longitudinal growth and calcium deposition of chick embryo femora in vitro (Studies on the salivary gland hormones. XXVIII). Endocrinol Jpn, 3(2), 106–115. https://doi.org/10.1507/endocrj1954.3.106

Ito Y. (1960). Parotin: a salivary gland hormone. Ann N Y Acad Sci, 85(1), 228–312. https://doi.org/10.1111/j.1749-6632.1960.tb49961.x

Jia J, Sun Y, Yang H, Wang X, Liu L, Zong L y Hu H. (2012). Effect of human saliva on wound healing. Chinese J Reparative Reconstructive Surg, 26(5), 563–566.

Kagami H, Hiramatsu Y, Hishida S, Okazaki Y, Horie K, Oda Y y Ueda M. (2000). Salivary growth factors in health and disease. Adv Dent Res, 14(1), 99–102. https://doi.org/10.1177/08959374000140011601

Karav S, German JB, Rouquié C, Le Parc A y Barile D. (2017). Studying lactoferrin N-Glycosylation. Int J Mol Sci, 18(4), 870. https://doi.org/10.3390/ijms18040870

Kasprzak A, Surdacka A, Tomczak M y Konkol M. (2012). Role of high endothelial postcapillary venules and selected adhesion molecules in periodontal diseases: a review. J Periodontal Res, 48(1), 1–21. https://doi.org/10.1111/j.1600-0765.2012.01492.x

Keswani SG, Balaji S, Le LD, Leung A, Parvadia JK, Frischer J, Yamano S, Taichman N y Crombleholme TM. (2013). Role of salivary vascular endothelial growth factor (VEGF) in palatal mucosal wound healing. Wound Repair Regen, 21(4), 554–562. https://doi.org/10.1111/wrr.12065

Khalaf H, Lönn J y Bengtsson T. (2014). Cytokines and chemokines are differentially expressed in patients with periodontitis: possible role for TGF-β1 as a marker for disease progression. Cytokine, 67(1), 29–35. https://doi.org/10.1016/j.cyto.2014.02.007

Kong EF, Tsui C, Boyce H, Ibrahim A, Hoag SW, Karlsson AJ, Meiller TF y Jabra-Rizk MA. (2016). Development and in vivo evaluation of a novel histatin-5 bioadhesive hydrogel formulation against oral candidiasis. Antimicrob Agents Chemother, 60(2), 881–889. https://doi.org/10.1128/AAC.02624-15

Kumasaka A, Iikubo M, Nishioka T, Kojima I, Shoji N, Sakamoto M y Sasano T. (2015). Insulin-Like growth factor I inhibits alveolar bone loss following tooth extraction in rats. Clin Implant Dent Relat Res, 17(6), 1174–1179. https://doi.org/10.1111/cid.12227

Larjava H. (2012). Oral wound healing: current state and future challenges. Endod Topics, 26(1), 1–3. https://doi.org/10.1111/etp.12023

Liechty KW, Kim HB, Adzick NS y Crombleholme TM. (2000), Fetal wound repair results in scar formation in interleukin-10-deficient mice in a syngeneic murine model of scarless fetal wound repair. J Pediatr Surg, 35(6), 866–873. https://doi.org/10.1053/jpsu.2000.6868

Liotta LA, Stetler-Stevenson WG y Steeg P. (1991). Cancer invasion and metastasis: positive and negative regulatory elements. Cancer Invest, 9(5), 543–551. https://doi.org/10.3109/07357909109018952

Marquez L, de Abreu FA, Ferreira CL, Alves GD, Miziara MN y Alves JB. (2013). Enhanced bone healing of rat tooth sockets after administration of epidermal growth factor (EGF) carried by liposome. Injury, 44(4), 558–564. https://doi.org/10.1016/j.injury.2012.10.014

Martin P. (1997). Wound healing--aiming for perfect skin regeneration. Science, 276(5309), 75–81. https://doi.org/10.1126/science.276.5309.75

McMorris FA, Mozell RL, Carson MJ, Shinar Y, Meyer RD y Marchetti N. (1993). Regulation of oligodendrocyte development and central nervous system myelination by insulin-like growth factors. Ann N Y Acad Sci, 692(1), 321–334. https://doi.org/10.1111/j.1749-6632.1993.tb26247.x

McNeely TB, Dealy M, Dripps DJ, Orenstein JM, Eisenberg SP y Wahl SM. (1995). Secretory leukocyte protease inhibitor: a human saliva protein exhibiting anti-human immunodeficiency virus 1 activity in vitro. J Clin Invest, 96(1), 456–464. https://doi.org/10.1172/JCI118056

Melino S, Santone C, Di Nardo P y Sarkar B. (2014). Histatins: salivary peptides with copper(II)and zinc(II)-binding motifs: perspectives for biomedical applications. FEBS J, 281(3), 657–672. https://doi.org/10.1111/febs.12612

Micera A, Lambiase A, Stampachiacchiere B, Bonini S, Bonini S y Levi-Schaffer F. (2007). Nerve growth factor and tissue repair remodeling: trkA(NGFR) and p75(NTR), two receptors one fate. Cytokine Growth Factor Rev, 18(3-4), 245–256. https://doi.org/10.1016/j.cytogfr.2007.04.004

Mogi M, Otogoto J, Ota N, Inagaki H, Minami M, Kojima K. (1999). Interleukin 1β, interleukin 6, β2microglobulin, and transforming growth factor-α in gingival crevicular fluid from human periodontal disease. Arch Oral Biol, 44(6), 535–539. https://doi.org/10.1016/S0003-9969(99)00020-5

Mohn CE, Steimetz T, Surkin PN, Fernandez-Solari J, Elverdin JC y Guglielmotti MB. (2015). Effects of saliva on early post-tooth extraction tissue repair in rats. Wound Repair Regen, 23(2), 241–250. https://doi.org/10.1111/wrr.12271

Mohn CE, Troncoso GR, Bozzini C, Conti MI, Fernandez Solari J y Elverdin JC. (2018). Changes in PGE2 signaling after submandibulectomy alter post-tooth extraction socket healing. Wound Repair Regen, 26(2), 153–162. https://doi.org/10.1111/wrr.12625

Montesi M, Panseri S, Iafisco M, Adamiano A y Tampieri A. (2015). Coupling hydroxyapatite nanocrystals with lactoferrin as a promising strategy to fine regulate bone homeostasis. PLoS One, 10(7), e0132633. https://doi.org/10.1371/journal.pone.0132633

Moore KW, de Waal Malefyt R, Coffman RL y O’Garra A. (2001). Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol, 19, 683–765. https://doi.org/10.1146/annurev.immunol.19.1.683

Münzberg H y Morrison CD. (2015). Structure, production and signaling of leptin. Metabolism, 64(1), 13–23. https://doi.org/10.1016/j.metabol.2014.09.010

Murakami Y, Nagata H, Amano A, Takagaki M, Shizukuishi S, Tsunemitsu A y Aimoto S. (1991). Inhibitory effects of human salivary histatins and lysozyme on coaggregation between Porphyromonas gingivalis and Streptococcus mitis. Infect Immun, 59(9), 3284–3286.

Murphy RA, Saide JD, Blanchard MH y Young M. (1977). Nerve growth factor in mouse serum and saliva: role of the submandibular gland. Proc Natl Acad Sci U S A, 74(6), 2330–2333. https://doi.org/10.1073/pnas.74.6.2330

Nagy A, Nagashima H, Cha S, Oxford GE, Zelles T, Peck AB y Humphreys-Beher MG. (2001). Reduced oral wound healing in the NOD mouse model for type 1 autoimmune diabetes and its reversal by epidermal growth factor supplementation. Diabetes, 50(9), 2100–2104. https://doi.org/10.2337/diabetes.50.9.2100

Nam K, Dean SM, Brown CT, Smith RJ Jr, Lei P, Andreadis ST y Baker OJ. (2019). Synergistic effects of laminin-1 peptides, VEGF and FGF9 on salivary gland regeneration. Acta Biomater, 91, 186–194. https://doi.org/10.1016/j.actbio.2019.04.049

Naot D, Grey A, Reid IR y Cornish J. (2005). Lactoferrin-a novel bone growth factor. Clin Med Res, 3(2), 93–101. https://doi.org/10.3121/cmr.3.2.93

Ohnishi Y, Watanabe M, Fujii T, Yasui H, Kubo H y Kakudo K. (2015). Infiltrating angiolipoma of the lower lip: a case report and literature review. Oncol Lett, 9(2), 833–836. https://doi.org/10.3892/ol.2014.2737

Oppenheim FG, Xu T, McMillian FM, Levitz SM, Diamond RD, Offner GD y Troxler RF. (1988). Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans. J Biol Chem, 263(16), 7472–7477. https://www.jbc.org/content/263/16/7472.long

Oudhoff MJ, Bolscher JG, Nazmi K, Kalay H, van ‘t Hof W, Amerongen AV y Veerman EC. (2008). Histatins are the major wound-closure stimulating factors in human saliva as identified in a cell culture assay. FASEB J, 22(11), 3805–3812. https://doi.org/10.1096/fj.08-112003

Oudhoff MJ, van den Keijbus PA, Kroeze KL, Nazmi K, Gibbs S, Bolscher JG y Veerman EC. (2009). Histatins enhance wound closure with oral and nonoral cells. J Dent Res, 88(9), 846–850. https://doi.org/10.1177/0022034509342951

Oudhoff MJ, Kroeze KL, Nazmi K, van den Keijbus PA, van ‘t Hof W, Fernandez-Borja M, Hordijk PL, Gibbs S, Bolscher JG y Veerman EC. (2009). Structure-activity analysis of histatin, a potent wound healing peptide from human saliva: cyclization of histatin potentiates molar activity 1,000-fold. FASEB J, 23(11), 3928–3935. https://doi.org/10.1096/fj.09-137588

Oxford GE, Nguyen KH, Alford CE, Tanaka Y y Humphreys-Beher MG. (1998). Elevated salivary EGF levels stimulated by periodontal surgery. J Periodontol, 69(4), 479–484. https://doi.org/10.1902/jop.1998.69.4.479

Oxford GE, Tayari L, Barfoot MD, Peck AB, Tanaka Y y Humphreys-Beher MG. (2000). Salivary EGF levels reduced in diabetic patients. J Diabetes Complications, 14(3), 140–145. https://doi.org/10.1016/s1056-8727(00)00073-8

Pedersen AML, Sørensen CE, Proctor GB, Carpenter GH y Ekström J. (2018). Salivary secretion in health and disease. J Oral Rehabil, 45(9), 730–746. https://doi.org/10.1111/joor.12664

Pincelli C y Yaar M. (1997). Nerve growth factor: its significance in cutaneous biology. J Investig Dermatol Symp Proc, 2(1), 31–36. https://doi.org/10.1038/jidsymp.1997.8

Polz-Dacewicz M, Strycharz-Dudziak M, Dworzański J, Stec A y Kocot J. (2016). Salivary and serum IL-10, TNF-α, TGF-β, VEGF levels in oropharyngeal squamous cell carcinoma and correlation with HPV and EBV Infections. Infect Agent Cancer, 11, 45. https://doi.org/10.1186/s13027-016-0093-6

Prapulla DV, Sujatha PB y Pradeep AR. (2007). Gingival crevicular fluid VEGF levels in periodontal health and disease. J Periodontol, 78(9), 1783–1787. https://doi.org/10.1902/jop.2007.070009

Rai B y Kaur J. (2012). Mental and physical workload, salivary stress biomarkers and taste perception: Mars desert research station expedition. N Am J Med Sci, 4(11), 577–581. https://doi.org/10.4103/1947-2714.103318

Robbins SL y Cotran RS. (2005). Robbins and Cotran pathologic basis of disease. (7th ed.). Kumar V, Abbas AK y Fausto N. (Eds.). Elsevier Saunders.

Robson M. (1997). Wound infection. A failure of wound healing caused by an imbalance of bacteria. Surg Clin North Am, 77(3), 637–650. https://doi.org/10.1016/s0039-6109(05)70572-7

Saitoh K y Wakabayashi K. (2000). Effects of hard tissue-related hormones on the intracellular calcium ion of the rat odontoblasts. Endocr J, 47(6), 675–682. https://doi.org/10.1507/endocrj.47.675

Sakai A, Ohshima M, Sugano N, Otsuka K y Ito K. (2006). Profiling the cytokines in gingival crevicular fluid using a cytokine antibody array. J Periodontol, 77(5), 856–864. https://doi.org/10.1902/jop.2006.050340

Sasaki T. (1992). The effects of basic fibroblast growth factor and doxorubicin on cultured human skin fibroblasts: relevance to wound healing. J Dermatol, 19(11), 664–666. https://doi.org/10.1111/j.1346-8138.1992.tb03755.x

Sato Y, Ohshima T y Kondo T. (1999). Regulatory role of endogenous interleukin-10 in cutaneous inflammatory response of murine wound healing. Biochem Biophys Res Commun, 265(1), 194–199. https://doi.org/10.1006/bbrc.1999.1455

Schenck K, Schreurs O, Hayashi K y Helgeland K. (2017). The role of nerve growth factor (NGF) and its precursor forms in oral wound healing. Int J Mol Sci, 18(2), 386. https://doi.org/10.3390/ijms18020386

Shifa S, Muthu MS, Amarlal D y Rathna Prabhu V. (2008). Quantitative assessment of IgA levels in the unstimulated whole saliva of caries-free and caries-active children. J Indian Soc Pedod Prev Dent, 26(4), 158–161. https://doi.org/10.4103/0970-4388.44031

Sierra-García GD, Castro-Ríos R, Gonzalez-Horta H, Lara-Arias J y Chávez-Montez A. (2016). Proteínas morfogenéticas óseas (BMP): aplicación clínica para reconstrucción de defectos en hueso. Gac Med Mex, 152(3), 381–385. https://www.anmm.org.mx/GMM/2016/n3/GMM_152_2016_3_381-385.pdf

Sogabe Y, Abe M, Yokoyama Y y Ishikawa O. (2006). Basic fibroblast growth factor stimulates human keratinocyte motility by Rac activation. Wound Repair Regen, 14(4), 457–462. https://doi.org/10.1111/j.1743-6109.2006.00143.x

Storesund T, Hayashi K, Kolltveit KM, Bryne M y Schenck K. (2008). Salivary trefoil factor 3 enhances migration of oral keratinocytes. Eur J Oral Sci, 116(2), 135–140. https://doi.org/10.1111/j.1600-0722.2007.00516.x

Storesund T, Schreurs O, Messelt EB, Kolltveit KM y Schenck K. (2009). Trefoil factor family 3 expression in the oral cavity. Eur J Oral Sci, 117(6), 636–643. https://doi.org/10.1111/j.1600-0722.2009.00679.x

Sun X, Salih E, Oppenheim FG y Helmerhorst EJ. (2009). Kinetics of histatin proteolysis in whole saliva and the effect on bioactive domains with metal-binding, antifungal, and wound-healing properties. FASEB J, 23(8), 2691–2701. https://doi.org/10.1096/fj.09-131045

Suzuki J, Aoyama N, Izumi Y, Isobe M, Komuro I y Hirata Y. (2015). Effect of periodontitis on cardiovascular manifestations in Marfan syndrome. Critical common role of TGF-β. Int Heart J, 56(2), 121–124. https://doi.org/10.1536/ihj.14-247

Takano K y Suzuki T. (1971). Localization of parotin in bovine parotid gland, demonstrated by the immunohistochemical method. Acta Histochem Cytochem, 4(1), 1-10. https://doi.org/10.1267/ahc.4.1

Thaweboon S, Thaweboon B, Nakornchai S y Jitmaitree S. (2008). Salivary secretory IgA, pH, flow rates, mutans streptococci and Candida in children with rampant caries. Southeast Asian J Trop Med Public Health, 39(5), 893–899. https://www.tm.mahidol.ac.th/seameo/2008_39_5/19-4210.pdf

Thim L. (1997). Trefoil peptides: from structure to function. Cell Mol Life Sci, 53(11–12), 888–903. https://doi.org/10.1007/s000180050108

Thompson RC y Ohlsson K. (1986). Isolation, properties, and complete amino acid sequence of human secretory leukocyte protease inhibitor, a potent inhibitor of leukocyte elastase. Proc Natl Acad Sci U S A, 83(18), 6692–6696. https://doi.org/10.1073/pnas.83.18.6692

Tominaga GT, Bailey S, Daughters K, Sarfeh IJ y Waxman K. (1995). The effect of Polyethylene GlycolSuperoxide Dismutase on gastric mucosa and survival in shock with tissue injury. Am Surg, 61(10), 925-929.

Torres P, Díaz J, Arce M, Silva P, Mendoza P, Lois P, Molina-Berríos A, Owen GI, Palma V y Torres VA. (2017). The salivary peptide histatin-1 promotes endothelial cell adhesion, migration, and angiogenesis. FASEB J, 31(11), 4946–4958. https://doi.org/10.1096/fj.201700085R

Torres P, Castro M, Reyes M y Torres VA. (2018). Histatins, wound healing, and cell migration. Oral Dis, 24(7), 1150–1160. https://doi.org/10.1111/odi.12816

Umeki H, Tokuyama R, Ide S, Okubo M, Tadokoro S, Tezuka M, Tatehara S y Satomura K. (2014). Leptin promotes wound healing in the oral mucosa. PLoS One, 9(7), e101984. https://doi.org/10.1371/journal.pone.0101984

Vacas MI, Amer M, Chiarenza AP, Luchelli MA, Mandalunis PM y Elverdin JC. (2008). Influence of submandibulectomy on alveolar bone loss in rats. J Periodontol, 79(6), 1075–1080. https://doi.org/10.1902/jop.2008.070566

van Dijk IA, Beker AF, Jellema W, Nazmi K, Wu G, Wismeijer D, Krawczyk PM, Bolscher JG, Veerman EC y Stap J. (2017). Histatin 1 enhances cell adhesion to titanium in an implant integration model. J Dent Res, 96(4), 430–436. https://doi.org/10.1177/0022034516681761

van Setten GB. (1995). Basic fibroblast growth factor in human saliva: detection and physiological implications. Laryngoscope, 105(6), 610–612. https://doi.org/10.1288/00005537-199506000-00009

Vedhara K, Fox JD y Wang EC. (1999). The measurement of stress-related immune dysfunction in psychoneuroimmunology. Neurosci Biobehav Rev, 23(5), 699–715. https://doi.org/10.1016/S0149-7634(99)00012-3

Veikkola, T y Alitalo K. (1999). VEGFs, receptors and angiogenesis. Semin Cancer Biol, 9(3), 211–220. https://doi.org/10.1006/scbi.1998.0091

Velusamy SK, Ganeshnarayan K, Markowitz K, Schreiner H, Furgang D, Fine DH y Velliyagounder K. (2013). Lactoferrin knockout mice demonstrates greater susceptibility to Aggregatibacter actinomycetemcomitans-induced periodontal disease. J Periodontol, 84(11), 1690–1701. https://doi.org/10.1902/jop.2013.120587

Venturi, S y Venturi M. (2009). Iodine in evolution of salivary glands and in oral health. Nutr Health, 20(2), 119–134. https://doi.org/10.1177/026010600902000204

Verrier, L. (1970). Dog licks man. Lancet, 295(7647), 615. https://doi.org/10.1016/S0140-6736(70)91650-8

Werner S. (1998). Keratinocyte growth factor: a unique player in epithelial repair processes. Cytokine Growth Factor Rev, 9(2), 153–165. https://doi.org/10.1016/S1359-6101(98)00010-0

White LA, Mitchell TI y Brinckerhoff CE. (2000). Transforming growth factor beta inhibitory element in the rabbit matrix metalloproteinase-1 (collagenase-1) gene functions as a repressor of constitutive transcription. Biochim Biophys Acta, 1490(3), 259–268. https://doi.org/10.1016/S0167-4781(00)00002-6

Wisner A, Dufour E, Messaoudi M, Nejdi A, Marcel A, Ungeheuer MN y Rougeot C. (2006). Human Opiorphin, a natural antinociceptive modulator of opioid-dependent pathways. Proc Natl Acad Sci U S A, 103(47), 17979–17984. https://doi.org/10.1073/pnas.0605865103

Wong JW, Gallant-Behm C, Wiebe C, Mak K, Hart DA, Larjava A y Hakkinen L. (2009). Wound healing in oral mucosa results in reduced scar formation as compared with skin: evidence from the red Duroc pig model and humans. Wound Repair Regen, 17(5), 717–729. https://doi.org/10.1111/j.1524-475X.2009.00531.x

Xu J, Acharya S, Sahin O, et al. (2016). 14-3-3ζ turns TGF-β’s function from tumor suppressor to metastasis promoter in breast cancer by contextual changes of Smad partners from p53 to Gli2. Cancer Cell, 27(2), 177–192. https://doi.org/10.1016/j.ccell.2014.11.025

Zacharski LR, Rosenstein R y Phillips PG. (1981). Tissue factor: a vitamin K-dependent clotting factor? Ann N Y Acad Sci, 370, 311–324. https://doi.org/10.1111/j.1749-6632.1981.tb29744.x

Zelles T, Purushotham KR, Macauley SP, Oxford GE y Humphreys-Beher MG. (1995). Saliva and growth factors: the fountain of youth resides in us all. J Dent Res, 74(12), 1826–1832. https://doi.org/10.1177/00220345950740120301

Zeng G, McCue HM, Mastrangelo L y Millis AJ. (1996). Endogenous TGF-β activity is modified during cellular aging: effects on metalloproteinase and TIMP-1 expression. Exp Cell Res, 228(2), 271–276. https://doi.org/10.1006/excr.1996.0326

Zhang F, Chen Y, Heiman M y Dimarchi R. (2005). Leptin: structure, function and biology. Vitam Horm, 71, 345–372. https://doi.org/10.1016/S0083-6729(05)71012-8

Descargas

Publicado

2021-09-29

Cómo citar

Troncoso, G. R., Balcarcel, N. B., Allamprese, S. G., Mohn, C. E., Elverdin, J. C., & Ossola, C. A. (2021). Saliva y Reparación Tisular: Un Natural e Inexplorado Universo Terapéutico. Revista De La Facultad De Odontologia De La Universidad De Buenos Aires, 35(80), 65–84. Recuperado a partir de https://revista.odontologia.uba.ar/index.php/rfouba/article/view/57