Influencia del Tallado en la Lisura Superficial del Esmalte

Autores/as

  • M R Zarzuela Universidad de Buenos Aires. Facultad de Odontología. Cátedra Preclínica de Odontología Restauradora. Buenos Aires, Argentina.
  • D Martucci Universidad de Buenos Aires. Facultad de Odontología. Cátedra Preclínica de Odontología Restauradora. Buenos Aires, Argentina.

Palabras clave:

turbina dental, micromotor eléctrico multiplicador, esmalte, contra ángulo multiplicador

Resumen

Al momento de realizar una preparación dental existen diferentes alternativas. Dentro del instrumental rotatorio hay dos opciones: la turbina dental (ultra-velocidad) y el micromotor acoplado a un contra-ángulo multiplicador (alta velocidad). El propósito de este estudio fue evaluar cualitativamente la diferencia en la lisura superficial sobre esmalte, que se genera al desgastarlo, utilizando para esto, una turbina dental y un micromotor eléctrico acoplado a un contra-ángulo multiplicador 1:5 (anillo rojo). Se realizó un análisis cualitativo sobre una muestra de 24 superficies de esmalte obtenidas de 12 premolares extraídos por indicación ortodóntica, los cuales fueron preparados y observados al microscopio óptico. Luego de observar las 24 superficies al microscopio se pudo constatar una mayor lisura superficial sobre esmalte al utilizar micromotor eléctrico acoplado a contra-ángulo multiplicador en comparación con turbina.

Citas

Al-Omari, W. M., Mitchell, C. A., y Cunningham, J. L. (2001). Surface roughness and wettability of enamel and dentine surfaces prepared with different dental burs. Journal of Oral Rehabilitation, 28(7), 645–650. https://doi.org/10.1046/j.1365-2842.2001.00722.x

Ayad M. F. (2009). Effects of tooth preparation burs and luting cement types on the marginal fit of extracoronal restorations. Journal of Prosthodontics, 18(2), 145–151. https://doi.org/10.1111/j.1532-849X.2008.00398.x

Ayad, M. F., Johnston, W. M., y Rosenstiel, S. F. (2009). Influence of dental rotary instruments on the roughness and wettability of human dentin surfaces. The Journal of Prosthetic Dentistry, 102(2), 81–88. https://doi.org/10.1016/S0022-3913(09)60114-1

Ayad, M. F., Rosenstiel, S. F., y Hassan, M. M. (1996). Surface roughness of dentin after tooth preparation with different rotary instrumentation. The Journal of Prosthetic Dentistry, 75(2), 122–128. https://doi.org/10.1016/s0022-3913(96)90087-6

Ayad, M. F., Rosenstiel, S. F., y Salama, M. (1997). Influence of tooth surface roughness and type of cement on retention of complete cast crowns. The Journal of Prosthetic Dentistry, 77(2), 116–121. https://doi.org/10.1016/s0022-3913(97)70223-3

Barghi, N., y Berry, T. G. (1997). Post-bonding crack formation in porcelain veneers. Journal of Esthetic Dentistry, 9(2), 51–54. https://doi.org/10.1111/j.1708-8240.1997.tb00918.x

Campbell S. C. (2013). Are friends electric?: A review of the electric handpiece in clinical dental practice. Dental Update, 40(3), 194–200. https://doi.org/10.12968/denu.2013.40.3.194

Choi, C., Driscoll, C. F., y Romberg, E. (2010). Comparison of cutting efficiencies between electric and air-turbine dental handpieces. The Journal of Prosthetic Dentistry, 103(2), 101–107. https://doi.org/10.1016/S0022-3913(10)60013-3

Chung, E. M., Sung, E. C., Wu, B., y Caputo, A. A. (2006). Comparing cutting efficiencies of diamond burs using a high-speed electric handpiece. General Dentistry,54(4), 254–257.

Darvell, B. W., y Dyson, J. E. (2005). A testing machine for dental air-turbine handpiece characteristics: free-running speed, stall torque, bearing resistance. Operative Dentistry, 30(1), 26–31.

Darvell, B. W., Murray, M. D., y Ladizesky, N. H. (1987). Contact angles: a note. Journal of Dentistry, 15(2), 82–84. https://doi.org/10.1016/0300-5712(87)90005-4

Dyson, J. E., y Darvell, B. W. (1993). The development of the dental high-speed air turbine handpiece. Part 2. Australian Dental Journal, 38(2), 131–143. https://doi.org/10.1111/j.1834-7819.1993.tb05475.x

Eick, J. D., Johnson, L. N., Fromer, J. R., Good, R. J., y Neumann, A. W. (1972). Surface topography: its influence on wetting and adhesion in a dental adhesive system. Journal of Dental Research, 51(3), 780–788. https://doi.org/10.1177/00220345720510031401

Eikenberg S. L. (2001). Comparison of the cutting efficiencies of electric motor and air turbine dental handpieces. General Dentistry, 49(2), 199–204.

Ercoli, C., Rotella, M., Funkenbusch, P. D., Russell, S., y Feng, C. (2009). In vitro comparison of the cutting efficiency and temperature production of ten different rotary cutting instruments. Part II: electric handpiece and comparison with turbine. The Journal of Prosthetic Dentistry, 101(5), 319–331. https://doi.org/10.1016/S0022-3913(09)60064-0

Funkenbusch, P. D., Rotella, M., Chochlidakis, K., y Ercoli, C. (2016). Multivariate evaluation of the cutting performance of rotary instruments with electric and air-turbine handpieces. The Journal of Prosthetic Dentistry, 116(4), 558–563. https://doi.org/10.1016/j.prosdent.2016.03.002

Funkenbusch, P. D., Rotella, M., y Ercoli, C. (2015). Designed experiment evaluation of key variables affecting the cutting performance of rotary instruments. The Journal of Prosthetic Dentistry, 113(4), 336–342. https://doi.org/10.1016/j.prosdent.2014.10.002

Geminiani, A., Abdel-Azim, T., Ercoli, C., Feng, C., Meirelles, L., y Massironi, D. (2014). Influence of oscillating and rotary cutting instruments with electric and turbine handpieces on tooth preparation surfaces. The Journal of Prosthetic Dentistry, 112(1), 51–58. https://doi.org/10.1016/j.prosdent.2014.02.007

Kenyon, B. J., Van Zyl, I., y Louie, K. G. (2005). Comparison of cavity preparation quality using an electric motor handpiece and an air turbine dental handpiece. Journal of the American Dental Association (1939), 136(8), 1101–1105. https://doi.org/10.14219/jada. archive.2005.0313

Magne, P., Kwon, K. R., Belser, U. C., Hodges, J. S., y Douglas, W. H. (1999). Crack propensity of porcelain laminate veneers: A simulated operatory evaluation. The Journal of Prosthetic Dentistry, 81(3), 327–334. https://doi.org/10.1016/s0022-3913(99)70277-5

Munechika, T., Suzuki, K., Nishiyama, M., Ohashi, M., y Horie, K. (1984). A comparison of the tensile bond strengths of composite resins to longitudinal and transverse sections of enamel prisms in human teeth. Journal of Dental Research, 63(8), 1079–1082. https://doi.org/10.1177/00220345840630081501

Oilo, G., yJørgensen,K.D.(1978).Theinfluenceofsurface roughness on the retentive ability of two dental luting cements. Journal of Oral Rehabilitation, 5(4), 377–389. https://doi.org/10.1111/j.1365-2842.1978. tb01257.x

Schuchard, A., y Watkins, E. C. (1965). Comparative efficiency of rotary cutting instruments. The Journal of Prosthetic Dentistry, 15(5), 908–923. https://doi.org/10.1016/0022-3913(65)90131-9

Sorenson, F.M., Cantwell, K.R., y Aplin, A.W. (1964). Thermogenics in cavity preparation using air turbine handpieces: the relationship of heat transferred to rate of tooth structure removal. Journal of Prosthetic Dentistry, 14(3), 524–532. https://doi.org/10.1016/S0022-3913(64)80021-4

Watson, T. F., Flanagan, D., y Stone, D. G. (2000). High and low torque handpieces: cutting dynamics, enamel cracking and tooth temperature. British Dental Journal, 188(12), 680–686. https://doi.org/10.1038/sj.bdj.4800576

Yamada, T., Kuwano, S., Ebisu, S., y Hayashi, M. (2016). Statistical analysis for subjective and objective evaluations of dental drill sounds. PloS One, 11(7), e0159926. https://doi.org/10.1371/journal.pone.0159926

Descargas

Publicado

2022-04-21

Cómo citar

Zarzuela, M. R., & Martucci, D. (2022). Influencia del Tallado en la Lisura Superficial del Esmalte. Revista De La Facultad De Odontologia De La Universidad De Buenos Aires, 36(84), 47–53. Recuperado a partir de https://revista.odontologia.uba.ar/index.php/rfouba/article/view/100