Relación Entre las Ciencias Básicas y Clínicas en la Modulación Central del Dolor
Palabras clave:
modulación, dolor, trigemino, plasticidad, sensibilizaciónResumen
Esta revisión busca proporcionar a los profesionales de la salud una mayor comprensión del dolor para su actividad clínica-asistencial. Basados en la hipótesis de neuroplasticidad presentada inicialmente por Ramón y Cajal y la teoría de la compuerta en la vía dolorosa presentada por Melzack y Wall, se ha elaborado una revisión bibliográfica con el objetivo de abordar la modulación de la vía nociceptiva desde un punto de vista fisiopatológico. Asimismo, se presentan los principales resultados obtenidos durante los últimos años en nuestro laboratorio usando ratas Wistar hembras como modelo de dolor experimental. Finalmente, se describe un circuito original de modulación central a nivel del subnúcleo caudal del trigémino con una visión integral de los componentes del sistema nociceptivo orofacial, para ayudar al clínico a comprender situaciones de sensibilización central con perpetuación del dolor y cómo paulatinamente el sistema nervioso central pone en marcha un sistema de modulación para adaptarse y alcanzar un estado similar al basal.
Citas
Acevedo González J.C. (2013). Ronald Melzack and Patrick Wall. La teoría de la compuerta. Más allá del concepto científico dos universos científicos dedicados al entendimiento del dolor. Revista de la Sociedad Española del Dolor, 20(4), 191–202. https://doi.org/10.4321/S1134-80462013000400008
Alderton, W. K., Cooper, C. E., Knowles, R. G. (2001). Nitric oxide synthases: structure, function and inhibition. The Biochemical Journal, 357(Pt 3), 593–615. https://doi.org/10.1042/0264-6021:3570593
Bae, Y. C., Kim, J. P., Choi, B. J., Park, K. P., Choi, M. K., Moritani, M., Yoshida, A., y Shigenaga, Y. (2003). Synaptic organization of tooth pulp afferent terminals in the rat trigeminal sensory nuclei. The Journal of Comparative Neurology, 463(1), 13–24. https://doi.org/10.1002/cne.10741
Basbaum, A. I., Bautista, D. M., Scherrer, G., y Julius, D. (2009). Cellular and molecular mechanisms of pain. Cell, 139(2), 267–284. https://doi.org/10.1016/j.cell.2009.09.028
Brunne, B., Zhao, S., Derouiche, A., Herz, J., May, P., Frotscher, M., y Bock, H. H. (2010). Origin, maturation, and astroglial transformation of secondary radial glial cells in the developing dentate gyrus. Glia, 58(13), 1553–1569. https://doi.org/10.1002/glia.21029
Canzobre, M. C., Fosser, N, y Rios, H. (2005). Modifications in the expression of S100b and serotonin in trigeminal subnucleus after pulpar molar injury. Biocell, 29(suppl.), 226 NR-P15
Canzobre, M. C., y Ríos, H. (2010a). Pulpar tooth injury induces plastic changes in S100B positive astroglial cells in the trigeminal subnucleus caudalis. Neuroscience Letters, 470(1), 71–75. https://doi.org/10.1016/j.neulet.2009.12.060
Canzobre, M. C., y Ríos, H. (2010b). GABAergic interneurons in the trigeminal subnucleus caudalis after unilateral tooth pulp injury. Journal of Dental Research, 89(Spec Iss C), 65. https://iadr.abstractarchives.com/abstract/argentine10-151019/gabaergic-interneurons-in-the-trigeminal-subnucleus-caudalis-after-unilateral-tooth-pulp-injury
Canzobre, M. C., y Ríos, H. (2011). Nicotinamide adenine dinucleotide phosphate/neuronal nitric oxide synthase-positive neurons in the trigeminal subnucleus caudalis involved in tooth pulp nociception. Journal of Neuroscience Research, 89(9), 1478–1488. https://doi.org/10.1002/jnr.22676
Canzobre, M. C., Paganelli, A. R., y Ríos, H. (2019). Effect of periapical inflammation on calcium binding proteins and ERK in the trigeminal nucleus. Acta Odontologica Latinoamericana: AOL, 32(2), 103–110. http://www.scielo.org.ar/pdf/aol/v32n2/v32n2a09.pdf
Castañeda, M. T., Sanabria, E. R., Hernandez, S., Ayala, A., Reyna, T. A., Wu, J. Y., y Colom, L. V. (2005). Glutamic acid decarboxylase isoforms are differentially distributed in the septal region of the rat. Neuroscience Research, 52(1), 107–119. https://doi.org/10.1016/j.neures.2005.02.003
Costa, R. P., Mizusaki, B. E., Sjöström, P. J., y van Rossum, M. C. (2017). Functional consequences of pre- and postsynaptic expression of synaptic plasticity. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 372(1715), 20160153. https://doi.org/10.1098/rstb.2016.0153
Cha, M., Eum, Y. J., Kim, K., Kim, L., Bak, H., Sohn, J. H., Cheong, C., y Lee, B. H. (2023). Diffusion tensor imaging reveals sex differences in pain sensitivity of rats. Frontiers in Molecular Neuroscience, 16, 1073963. https://doi.org/10.3389/fnmol.2023.1073963
Craig A. D. (2003). Pain mechanisms: labeled lines versus convergence in central processing. Annual Review of Neuroscience, 26, 1–30. https://doi.org/10.1146/annurev.neuro.26.041002.131022
Donato, R., Sorci, G., Riuzzi, F., Arcuri, C., Bianchi, R., Brozzi, F., Tubaro, C., y Giambanco, I. (2009). S100B's double life: intracellular regulator and extracellular signal. Biochimica et Biophysica Acta, 1793(6), 1008–1022. https://doi.org/10.1016/j.bbamcr.2008.11.009
Dubner, R., y Ren, K. (2004). Brainstem mechanisms of persistent pain following injury. Journal of Orofacial Pain, 18(4), 299–305.
Gamboa-Esteves, F. O., Lima, D., y Batten, T. F. (2001). Neurochemistry of superficial spinal neurones projecting to nucleus of the solitary tract that express c-fos on chemical somatic and visceral nociceptive input in the rat. Metabolic Brain Disease, 16(3-4), 151–164. https://doi.org/10.1023/a:1012536910214
Guy, N., Chalus, M., Dallel, R., y Voisin, D. L. (2005). Both oral and caudal parts of the spinal trigeminal nucleus project to the somatosensory thalamus in the rat. The European Journal of Neuroscience, 21(3), 741–754. https://doi.org/10.1111/j.1460-9568.2005.03918.x
Heinricher, M. M., Tavares, I., Leith, J. L., y Lumb, B. M. (2009). Descending control of nociception: Specificity, recruitment and plasticity. Brain Research Reviews, 60(1), 214–225. https://doi.org/10.1016/j.brainresrev.2008.12.009
Latremoliere, A., y Woolf, C. J. (2009). Central sensitization: a generator of pain hypersensitivity by central neural plasticity. The Journal of Pain, 10(9), 895–926. https://doi.org/10.1016/j.jpain.2009.06.012
Mason P. (2001). Contributions of the medullary raphe and ventromedial reticular region to pain modulation and other homeostatic functions. Annual Review of Neuroscience, 24, 737–777. https://doi.org/10.1146/annurev.neuro.24.1.737
Melzack, R., y Wall, P. D. (1965). Pain mechanisms: a new theory. Science (New York, N.Y.), 150(3699), 971–979. https://doi.org/10.1126/science.150.3699.971
Millan M. J. (1999). The induction of pain: an integrative review. Progress in Neurobiology, 57(1), 1–164. https://doi.org/10.1016/s0301-0082(98)00048-3
Millan M. J. (2002). Descending control of pain. Progress in Neurobiology, 66(6), 355–474. https://doi.org/10.1016/s0301-0082(02)00009-6
Okada-Ogawa, A., Suzuki, I., Sessle, B. J., Chiang, C. Y., Salter, M. W., Dostrovsky, J. O., Tsuboi, Y., Kondo, M., Kitagawa, J., Kobayashi, A., Noma, N., Imamura, Y., y Iwata, K. (2009). Astroglia in medullary dorsal horn (trigeminal spinal subnucleus caudalis) are involved in trigeminal neuropathic pain mechanisms. The Journal of Neuroscience, 29(36), 11161–11171. https://doi.org/10.1523/JNEUROSCI.3365-09.2009
Okamoto, K., Kimura, A., Donishi, T., Imbe, H., Senba, E., y Tamai, Y. (2005). Central serotonin 3 receptors play an important role in the modulation of nociceptive neural activity of trigeminal subnucleus caudalis and nocifensive orofacial behavior in rats with persistent temporomandibular joint inflammation. Neuroscience, 135(2), 569–581. https://doi.org/10.1016/j.neuroscience.2005.06.032
Oshima, K., Takeda, M., Tanimoto, T., Katsuumi, I., y Matsumoto, S. (2006). Tooth-pulp-evoked rostral spinal trigeminal neuronal excitation is attenuated by the activation of 5-HT3 receptors via GABAergic interneurons in the rat. Brain Research, 1109(1), 70–73. https://doi.org/10.1016/j.brainres.2006.06.036
Panneton, W. M., Pan, B., y Gan, Q. (2017). Somatotopy in the medullary dorsal horn as a basis for orofacial reflex behavior. Frontiers in Neurology, 8, 522. https://doi.org/10.3389/fneur.2017.00522
Park, J., Trinh, V. N., Sears-Kraxberger, I., Li, K. W., Steward, O., y Luo, Z. D. (2016). Synaptic ultrastructure changes in trigeminocervical complex posttrigeminal nerve injury. The Journal of Comparative Neurology, 524(2), 309–322. https://doi.org/10.1002/cne.23844
Petersen-Felix, S., y Curatolo, M. (2002). Neuroplasticity--an important factor in acute and chronic pain. Swiss Medical Weekly, 132(21-22), 273–278. https://doi.org/10.4414/smw.2002.09913
Prescott, S. A., Sejnowski, T. J., y De Koninck, Y. (2006). Reduction of anion reversal potential subverts the inhibitory control of firing rate in spinal lamina I neurons: towards a biophysical basis for neuropathic pain. Molecular Pain, 2, 32. https://doi.org/10.1186/1744-8069-2-32
Ramos, A. J., Rubio, M. D., Defagot, C., Hischberg, L., Villar, M. J., y Brusco, A. (2004). The 5HT1A receptor agonist, 8-OH-DPAT, protects neurons and reduces astroglial reaction after ischemic damage caused by cortical devascularization. Brain Research, 1030(2), 201–220. https://doi.org/10.1016/j.brainres.2004.10.019
Rowitch, D. H., y Kriegstein, A. R. (2010). Developmental genetics of vertebrate glial-cell specification. Nature, 468(7321), 214–222. https://doi.org/10.1038/nature09611
Salter M. W. (2005). Cellular signalling pathways of spinal pain neuroplasticity as targets for analgesic development. Current Topics in Medicinal Chemistry, 5(6), 557–567. https://doi.org/10.2174/1568026054367638
Sangalli, L., Souza, L. C., Letra, A., Shaddox, L., y Ioannidou, E. (2023). Sex as a biological variable in oral diseases: evidence and future prospects. Journal of Dental Research, 102(13), 1395–1416. https://doi.org/10.1177/00220345231197143
Sawynok, J., y Liu, X. J. (2003). Adenosine in the spinal cord and periphery: release and regulation of pain. Progress in Neurobiology, 69(5), 313–340. https://doi.org/10.1016/s0301-0082(03)00050-9
Sessle B. J. (2011). Peripheral and central mechanisms of orofacial inflammatory pain. International Review of Neurobiology, 97, 179–206. https://doi.org/10.1016/B978-0-12-385198-7.00007-2
Takemura, M., Sugiyo, S., Moritani, M., Kobayashi, M., y Yonehara, N. (2006). Mechanisms of orofacial pain control in the central nervous system. Archives of Histology and Cytology, 69(2), 79–100. https://doi.org/10.1679/aohc.69.79
Tarsa, L., Bałkowiec-Iskra, E., Kratochvil, F. J., 3rd, Jenkins, V. K., McLean, A., Brown, A. L., Smith, J. A., Baumgartner, J. C., y Balkowiec, A. (2010). Tooth pulp inflammation increases brain-derived neurotrophic factor expression in rodent trigeminal ganglion neurons. Neuroscience, 167(4), 1205–1215. https://doi.org/10.1016/j.neuroscience.2010.03.002
Vanegas, H., y Schaible, H. G. (2004). Descending control of persistent pain: inhibitory or facilitatory?. Brain Research. Brain Research Reviews, 46(3), 295–309. https://doi.org/10.1016/j.brainresrev.2004.07.004
Viggiano, A., Monda, M., Viggiano, A., Chiefari, M., Aurilio, C., y De Luca, B. (2004). Evidence that GABAergic neurons in the spinal trigeminal nucleus are involved in the transmission of inflammatory pain in the rat: a microdialysis and pharmacological study. European Journal of Pharmacology, 496(1-3), 87–92. https://doi.org/10.1016/j.ejphar.2004.06.019
Xu, L., Mabuchi, T., Katano, T., Matsumura, S., Okuda-Ashitaka, E., Sakimura, K., Mishina, M., y Ito, S. (2007). Nitric oxide (NO) serves as a retrograde messenger to activate neuronal NO synthase in the spinal cord via NMDA receptors. Nitric Oxide: Biology and Chemistry, 17(1), 18–24. https://doi.org/10.1016/j.niox.2007.04.004
Yeo J. F. (2002). Does nitric oxide play a role in orofacial pain transmission?. Annals of the New York Academy of Sciences, 962, 151–160. https://doi.org/10.1111/j.1749-6632.2002.tb04065.x
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Revista de la Facultad de Odontologia de la Universidad de Buenos Aires
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.