Estrategias Diagnósticas y Modelos Experimentales para el Estudio de las Enfermedades Periodontales
DOI:
https://doi.org/10.62172/revfouba.n94.a265Palabras clave:
periodontitis experimental, ligadura, lipopolisacáridos, inoculación de bacteriasResumen
Las enfermedades periodontales (EP) constituyen patologías inflamatorias crónicas que afectan los tejidos de sostén del diente y pueden conducir a la pérdida dentaria si no se realiza el tratamiento adecuado. Aunque diversos factores inciden en su aparición, ciertas especies del biofilm bacteriano son reconocidas como el principal agente etiológico. Las bacterias activan respuestas inflamatorias que generan daño tisular, lo que resalta la importancia de comprender sus mecanismos patogénicos y explorar nuevas estrategias terapéuticas. La elevada prevalencia de las EP ha motivado extensas investigaciones, tanto clínicas como experimentales, muchas de las cuales han empleado modelos in vivo e in vitro para reproducir la enfermedad. Estos modelos han sido esenciales para estudiar su etiología, progresión y relación con otras patologías. En las últimas décadas, los avances tecnológicos han enriquecido este campo, permitiendo un abordaje más preciso y multifacético. Esta revisión analiza los fundamentos y aplicaciones de los principales modelos experimentales utilizados en el estudio de la periodontitis, presentando investigaciones representativas y evaluando su relevancia en la investigación periodontal actual.
Citas
Ali Alftaikhah, S. A., Issrani, R., Alnasser, M., Almutairi, H. A., Khattak, O., Iqbal, A., y Prabhu, N. (2023). Salivary biomarkers in periodontitis: a scoping review. Cureus, 15(12), e50207. https://doi.org/10.7759/cureus.50207
Amstad-Jossi, M., y Schroeder, H. E. (1978). Age-related alterations of periodontal structures around the cemento-enamel junction and of the gingival connective tissue composition in germ-free rats. Journal of Periodontal Research, 13(1), 76–90. https://doi.org/10.1111/j.1600-0765.1978.tb00156.x
Andreakos, E., Sacre, S. M., Smith, C., Lundberg, A., Kiriakidis, S., Stonehouse, T., Monaco, C., Feldmann, M., y Foxwell, B. M. (2004). Distinct pathways of LPS-induced NF-kappa B activation and cytokine production in human myeloid and nonmyeloid cells defined by selective utilization of MyD88 and Mal/TIRAP. Blood, 103(6), 2229–2237. https://doi.org/10.1182/blood-2003-04-1356
Antona, M. E., Ramos, C., Orzuza, R., González, G. E., González, P. M., Cabrera, J., Ferreira Monteiro, A. G., Zago, V., Friedman, S. M., Steimetz, T., y Macri, E. V. (2024). Curcumin administration mitigates periodontitis-induced tissue damage in hypercholesterolemic rats: a natural preventive approach. Odontology, Advance online publication. https://doi.org/10.1007/s10266-024-01042-9
Baheti, M., Durge, K., Bajaj, P., Kale, B., y Shirbhate, U. (2023). Role of animal models in periodontal clinical research and its present-day status: a narrative review. Journal of Clinical and Diagnosis Research, 17(3), ZE19–ZE22. http://doi.org/10.7860/JCDR/2023/61707.17643
Bai, L., Chen, B. Y., Liu, Y., Zhang, W. C., y Duan, S. Z. (2022). A mouse periodontitis model with humanized oral bacterial community. Frontiers in Cellular and Infection Microbiology, 12, 842845. https://doi.org/10.3389/fcimb.2022.842845
Bainbridge, B., Verma, R. K., Eastman, C., Yehia, B., Rivera, M., Moffatt, C., Bhattacharyya, I., Lamont, R. J., y Kesavalu, L. (2010). Role of Porphyromonas gingivalis phosphoserine phosphatase enzyme SerB in inflammation, immune response, and induction of alveolar bone resorption in rats. Infection and Immunity, 78(11), 4560–4569. https://doi.org/10.1128/IAI.00703-10
Baker, P. J., Dixon, M., y Roopenian, D. C. (2000). Genetic control of susceptibility to Porphyromonas gingivalis-induced alveolar bone loss in mice. Infection and Immunity, 68(10), 5864–5868. https://doi.org/10.1128/IAI.68.10.5864-5868.2000
Balcarcel, N. B. (2022). Mecanismos de inducción recíproca entre periodontitis e hiposialia: estudio del patrón de expresión de los receptores específicos del sistema endocannabinoide en los tejidos orales involucrados [Tesis de Doctorado]. Universidad de Buenos Aires. Facultad de Odontología. Buenos Aires, Argentina. https://repositorio.odontologia.uba.ar/items/show/1416
Balcarcel, N. B., Ossola, C. A., Troncoso, G. R., Rodas, J. A., Astrauskas, J. I., Bozzini, C., Elverdin, J. C., y Fernández Solari, J. (2024). Periodontal status and mandibular biomechanics in rats subjected to hyposalivation and periodontitis. Acta Odontológica Latinoamericana, 37(1), 45–58. https://doi.org/10.54589/aol.37/1/45
Baumgartner, J. C., Falkler, W. A., Jr, y Beckerman, T. (1992). Experimentally induced infection by oral anaerobic microorganisms in a mouse model. Oral Microbiology and Immunology, 7(4), 253–256. https://doi.org/10.1111/j.1399-302x.1992.tb00035.x
Botero, J. E., y Bedoya, E. (2010). Determinantes del diagnóstico periodontal. Revista Clínica de Periodoncia, Implantología y Rehabilitación Oral, 3(2), 94–99. https://doi.org/10.4067/S0719-01072010000200007
Carvajal, P., Carrer, F. C. A., Galante, M. L., Vernal, R., y Solis, C. B. (2024). Prevalence of periodontal diseases: Latin America and the Caribbean Consensus 2024. Brazilian Oral Research, 38(suppl 1), e116. https://doi.org/10.1590/1807-3107bor-2024.vol38.0116
Cekici, A., Kantarci, A., Hasturk, H., y Van Dyke, T. E. (2014). Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontology 2000, 64(1), 57–80. https://doi.org/10.1111/prd.12002
Chang, K. M., Ramamurthy, N. S., McNamara, T. F., Genco, R. J., y Golub, L. M. (1988). Infection with a gram-negative organism stimulates gingival collagenase production in non-diabetic and diabetic germfree rats. Journal of Periodontal Research, 23(4), 239–244. https://doi.org/10.1111/j.1600-0765.1988.tb01365.x
Chen, B. Y., Lin, W. Z., Li, Y. L., Bi, C., Du, L. J., Liu, Y., Zhou, L. J., Liu, T., Xu, S., Shi, C. J., Zhu, H., Wang, Y. L., Sun, J. Y., Liu, Y., Zhang, W. C., Lu, H. X., Wang, Y. H., Feng, Q., Chen, F. X., Wang, C. Q., … Duan, S. Z. (2023). Roles of oral microbiota and oral-gut microbial transmission in hypertension. Journal of Advanced Research, 43, 147–161. https://doi.org/10.1016/j.jare.2022.03.007
Choi, Y. J., Park, J., Shin, M. G., Jung, B. K., Shin, H., Cho, S., Cho, H. I., y Nah, E. H. (2025). Distribution and characteristics of oral pathogens according to blood glucose levels in South Korean health examinees. International Journal of Molecular Sciences, 26(6), 2638. https://doi.org/10.3390/ijms26062638
Darveau R. P. (2010). Periodontitis: a polymicrobial disruption of host homeostasis. Nature Reviews. Microbiology, 8(7), 481–490. https://doi.org/10.1038/nrmicro2337
de Molon, R. S., de Avila, E. D., y Cirelli, J. A. (2013). Host responses induced by different animal models of periodontal disease: a literature review. Journal of Investigative and Clinical Dentistry, 4(4), 211–218. https://doi.org/10.1111/jicd.12018
Donos, N., Park, J. C., Vajgel, A., de Carvalho Farias, B., y Dereka, X. (2018). Description of the periodontal pocket in preclinical models: limitations and considerations. Periodontology 2000, 76(1), 16–34. https://doi.org/10.1111/prd.12155
Ebersole, J. L., Feuille, F., Kesavalu, L., y Holt, S. C. (1997). Host modulation of tissue destruction caused by periodontopathogens: effects on a mixed microbial infection composed of Porphyromonas gingivalis and Fusobacterium nucleatum. Microbial Pathogenesis, 23(1), 23–32. https://doi.org/10.1006/mpat.1996.0129
Fernández-Solari, J., Barrionuevo, P., y Mastronardi, C. A. (2015). Periodontal disease and its systemic associated diseases. Mediators of Inflammation, 2015, 153074. https://doi.org/10.1155/2015/153074
Garlet, G. P., Cardoso, C. R., Campanelli, A. P., Ferreira, B. R., Avila-Campos, M. J., Cunha, F. Q., y Silva, J. S. (2007). The dual role of p55 tumour necrosis factor-alpha receptor in Actinobacillus actinomycetemcomitans-induced experimental periodontitis: host protection and tissue destruction. Clinical and Experimental Immunology, 147(1), 128–138. https://doi.org/10.1111/j.1365-2249.2006.03260.x
Genco, R. J., y Borgnakke, W. S. (2013). Risk factors for periodontal disease. Periodontology 2000, 62(1), 59–94. https://doi.org/10.1111/j.1600-0757.2012.00457.x
González, P. M., Ramos, C., Antona, M. E., Friedman, S. M., Macri, E. V., Puntarulo, S. (2015). Marcadores de estrés oxidativo en la enfermedad periodontal. Medicina (Buenos Aires), 75(Suppl. 2), res. 90. https://bicyt.conicet.gov.ar/fichas/produccion/5449809
Guggenheim, B., Giertsen, E., Schüpbach, P., y Shapiro, S. (2001). Validation of an in vitro biofilm model of supragingival plaque. Journal of Dental Research, 80(1), 363–370. https://doi.org/10.1177/00220345010800011201
Guvva, S., Patil, M. B., y Mehta, D. S. (2017). Rat as laboratory animal model in periodontology. International Journal of Oral Health Sciences, 7(2), 68–75. http://doi.org/10.4103/ijohs.ijohs_47_17
Gyurko, R., Siqueira, C. C., Caldon, N., Gao, L., Kantarci, A., y Van Dyke, T. E. (2006). Chronic hyperglycemia predisposes to exaggerated inflammatory response and leukocyte dysfunction in Akita mice. Journal of Immunology, 177(10), 7250–7256. https://doi.org/10.4049/jimmunol.177.10.7250
Haerian, A., Adonogianaki, E., Mooney, J., Docherty, J. P., y Kinane, D. F. (1995). Gingival crevicular stromelysin, collagenase and tissue inhibitor of metalloproteinases levels in healthy and diseased sites. Journal of Clinical Periodontology, 22(7), 505–509. https://doi.org/10.1111/j.1600-051x.1995.tb00797.x
Haerian, A., Adonogianaki, E., Mooney, J., Manos, A., y Kinane, D. F. (1996). Effects of treatment on gingival crevicular collagenase, stromelysin and tissue inhibitor of metalloproteinases and their ability to predict response to treatment. Journal of Clinical Periodontology, 23(2), 83–91. https://doi.org/10.1111/j.1600-051x.1996.tb00539.x
Hoffman, M. M., Schour, I. (1940). Quantitative studies in the development of the rat molar: II. Alveolar bone, cementum, and eruption (From birth to 500 days). American Journal of Orthodontics and Oral Surgery, 26(9), 854–874. https://doi.org/10.1016/S0096-6347(40)90051-5
Jotwani, R., y Cutler, C. W. (2004). Fimbriated Porphyromonas gingivalis is more efficient than fimbria-deficient P. gingivalis in entering human dendritic cells in vitro and induces an inflammatory Th1 effector response. Infection and Immunity, 72(3), 1725–1732. https://doi.org/10.1128/IAI.72.3.1725-1732.2004
Karimbux, N. Y., Ramamurthy, N. S., Golub, L. M., y Nishimura, I. (1998). The expression of collagen I and XII mRNAs in Porphyromonas gingivalis-induced periodontitis in rats: the effect of doxycycline and chemically modified tetracycline. Journal of Periodontology, 69(1), 34–40. https://doi.org/10.1902/jop.1998.69.1.34
Kassebaum, N. J., Smith, A. G. C., Bernabé, E., Fleming, T. D., Reynolds, A. E., Vos, T., Murray, C. J. L., Marcenes, W., y GBD 2015 Oral Health Collaborators (2017). Global, regional, and national prevalence, incidence, and disability-adjusted life years for oral conditions for 195 countries, 1990-2015: a systematic analysis for the global burden of diseases, injuries, and risk factors. Journal of Dental Research, 96(4), 380–387. https://doi.org/10.1177/0022034517693566
Khuda, F., Baharin, B., Anuar, N. N. M., Satimin, B. S. F., y Nasruddin, N. S. (2024). Effective modalities of periodontitis induction in rat model. Journal of Veterinary Dentistry, 41(1), 49–57. https://doi.org/10.1177/08987564231178459
Kim, D. M., y Bassir, S. H. (2017). When is cone-beam computed tomography imaging appropriate for diagnostic inquiry in the management of inflammatory periodontitis? An American Academy of Periodontology best evidence review. Journal of Periodontology, 88(10), 978–998. https://doi.org/10.1902/jop.2017.160505
Klausen B. (1991). Microbiological and immunological aspects of experimental periodontal disease in rats: a review article. Journal of Periodontology, 62(1), 59–73. https://doi.org/10.1902/jop.1991.62.1.59
Kotsilkov, K., Popova, C., Boyanova, L., Setchanova, L., y Mitov, I. (2015). Comparison of culture method and real-time PCR for detection of putative periodontopathogenic bacteria in deep periodontal pockets. Biotechnology & Biotechnological Equipment, 29(5), 996–1002. https://doi.org/10.1080/13102818.2015.1058188
Kowashi, Y., Jaccard, F., y Cimasoni, G. (1979). Increase of free collagenase and neutral protease activities in the gingival crevice during experimental gingivitis in man. Archives of Oral Biology, 24(9), 645–650. https://doi.org/10.1016/0003-9969(79)90112-2
Kuhr, A., Popa-Wagner, A., Schmoll, H., Schwahn, C., y Kocher, T. (2004). Observations on experimental marginal periodontitis in rats. Journal of Periodontal Research, 39(2), 101–106. https://doi.org/10.1111/j.1600-0765.2004.00710.x
Lamont, R. J., y Jenkinson, H. F. (1998). Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis. Microbiology and Molecular Biology Reviews, 62(4), 1244–1263. https://doi.org/10.1128/MMBR.62.4.1244-1263.1998
Lee, S. F., Andrian, E., Rowland, E., y Marquez, I. C. (2009). Immune response and alveolar bone resorption in a mouse model of Treponema denticola infection. Infection and Immunity, 77(2), 694–698. https://doi.org/10.1128/IAI.01004-08
Leira, Y., Iglesias-Rey, R., Gómez-Lado, N., Aguiar, P., Campos, F., D'Aiuto, F., Castillo, J., Blanco, J., y Sobrino, T. (2019). Porphyromonas gingivalis lipopolysaccharide-induced periodontitis and serum amyloid-beta peptides. Archives of Oral Biology, 99, 120–125. https://doi.org/10.1016/j.archoralbio.2019.01.008
Li, Y., Messina, C., Bendaoud, M., Fine, D. H., Schreiner, H., y Tsiagbe, V. K. (2010). Adaptive immune response in osteoclastic bone resorption induced by orally administered Aggregatibacter actinomycetemcomitans in a rat model of periodontal disease. Molecular Oral Microbiology, 25(4), 275–292. https://doi.org/10.1111/j.2041-1014.2010.00576.x
Li, Q., Wang, D., Xiao, C., Wang, H., y Dong, S. (2024). Advances in hydrogels for periodontitis treatment. ACS Biomaterials Science & Engineering, 10(5), 2742–2761. https://doi.org/10.1021/acsbiomaterials.4c00220
Lin, P., Niimi, H., Ohsugi, Y., Tsuchiya, Y., Shimohira, T., Komatsu, K., Liu, A., Shiba, T., Aoki, A., Iwata, T., Y Katagiri, S. (2021). Application of ligature-induced periodontitis in mice to explore the molecular mechanism of periodontal disease. International Journal of Molecular Sciences, 22(16), 8900. https://doi.org/10.3390/ijms22168900
Listgarten M. A. (1975). Similarity of epithelial relationships in the gingiva of rat and man. Journal of Periodontology, 46(11), 677–680. https://doi.org/10.1902/jop.1975.46.11.677
Llavaneras, A., Golub, L. M., Rifkin, B. R., Heikkilä, P., Sorsa, T., Teronen, O., Salo, T., Liu, Y., Ryan, M. E., y Ramamurthy, N. S. (1999). CMT-8/clodronate combination therapy synergistically inhibits alveolar bone loss in LPS-induced periodontitis. Annals of the New York Academy of Sciences, 878, 671–674. https://doi.org/10.1111/j.1749-6632.1999.tb07758.x
Lu, Y. C., Yeh, W. C., y Ohashi, P. S. (2008). LPS/TLR4 signal transduction pathway. Cytokine, 42(2), 145–151. https://doi.org/10.1016/j.cyto.2008.01.006
Lu, J., Zhang, S., Huang, Y., Qian, J., Tan, B., Qian, X., Zhuang, J., Zou, X., Li, Y., y Yan, F. (2022). Periodontitis-related salivary microbiota aggravates Alzheimer's disease via gut-brain axis crosstalk. Gut Microbes, 14(1), 2126272. https://doi.org/10.1080/19490976.2022.2126272
Manoil, D., Parga, A., Bostanci, N., y Belibasakis, G. N. (2024). Microbial diagnostics in periodontal diseases. Periodontology 2000, 95(1), 176–193. https://doi.org/10.1111/prd.12571
Marchesan, J., Girnary, M. S., Jing, L., Miao, M. Z., Zhang, S., Sun, L., Morelli, T., Schoenfisch, M. H., Inohara, N., Offenbacher, S., y Jiao, Y. (2018). An experimental murine model to study periodontitis. Nature Protocols, 13(10), 2247–2267. https://doi.org/10.1038/s41596-018-0035-4
Martínez, M., Martín-Hernández, D., Virto, L., MacDowell, K. S., Montero, E., González-Bris, Á., Marín, M. J., Ambrosio, N., Herrera, D., Leza, J. C., Sanz, M., García-Bueno, B., y Figuero, E. (2021). Periodontal diseases and depression: a pre-clinical in vivo study. Journal of Clinical Periodontology, 48(4), 503–527. https://doi.org/10.1111/jcpe.13420
Front Cell Infect Microbiol. 2024 Aug 15;14:1412007. doi: 10.3389/fcimb.2024.1412007.
Muta, T., y Takeshige, K. (2001). Essential roles of CD14 and lipopolysaccharide-binding protein for activation of toll-like receptor (TLR)2 as well as TLR4 Reconstitution of TLR2- and TLR4-activation by distinguishable ligands in LPS preparations. European Journal of Biochemistry, 268(16), 4580–4589. https://doi.org/10.1046/j.1432-1327.2001.02385.x
Mysak, J., Podzimek, S., Sommerova, P., Lyuya-Mi, Y., Bartova, J., Janatova, T., Prochazkova, J., y Duskova, J. (2014). Porphyromonas gingivalis: major periodontopathic pathogen overview. Journal of Immunology Research, 2014, 476068. https://doi.org/10.1155/2014/476068
Nogueira, A. V., de Souza, J. A., de Molon, R. S., Pereira, E. da S., de Aquino, S. G., Giannobile, W. V., y Cirelli, J. A. (2014). HMGB1 localization during experimental periodontitis. Mediators of Inflammation, 2014, 816320. https://doi.org/10.1155/2014/816320
Notarte, K. I. R., Quimque, M. T. J., Macaranas, I. T., Khan, A., Pastrana, A. M., Villaflores, O. B., Arturo, H. C. P., Pilapil Iv, D. Y. H., Tan, S. M. M., Wei, D. Q., Wenzel-Storjohann, A., Tasdemir, D., Yen, C. H., Ji, S. Y., Kim, G. Y., Choi, Y. H., y Macabeo, A. P. G. (2023). Attenuation of Lipopolysaccharide-Induced Inflammatory Responses through Inhibition of the NF-κB Pathway and the Increased NRF2 Level by a Flavonol-Enriched n-Butanol Fraction from Uvaria alba. ACS Omega, 8(6), 5377–5392. https://doi.org/10.1021/acsomega.2c06451
Oda, M., Yamamoto, H., y Kawakami, T. (2024). Maintenance of homeostasis by TLR4 ligands. Frontiers in Immunology, 15, 1286270. https://doi.org/10.3389/fimmu.2024.1286270
Ossola, C. A., Balcarcel, N. B., Astrauskas, J. I., Bozzini, C., Elverdin, J. C., y Fernández-Solari, J. (2019). A new target to ameliorate the damage of periodontal disease: The role of transient receptor potential vanilloid type-1 in contrast to that of specific cannabinoid receptors in rats. Journal of Periodontology, 90(11), 1325–1335. https://doi.org/10.1002/JPER.18-0766
Ossola, C. A., Surkin, P. N., Mohn, C. E., Elverdin, J. C., y Fernández-Solari, J. (2016). Anti-inflammatory and osteoprotective effects of cannabinoid-2 receptor agonist hu-308 in a rat model of lipopolysaccharide-induced periodontitis. Journal of Periodontology, 87(6), 725–734. https://doi.org/10.1902/jop.2016.150612
Ossola, C. A., Surkin, P. N., Pugnaloni, A., Mohn, C. E., Elverdin, J. C., y Fernandez-Solari, J. (2012). Long-term treatment with methanandamide attenuates LPS-induced periodontitis in rats. Inflammation Research, 61(9), 941–948. https://doi.org/10.1007/s00011-012-0485-z
Oz, H. S., y Puleo, D. A. (2011). Animal models for periodontal disease. Journal of Biomedicine & Biotechnology, 2011, 754857. https://doi.org/10.1155/2011/754857
Papapanou, P. N., Sanz, M., Buduneli, N., Dietrich, T., Feres, M., Fine, D. H., Flemmig, T. F., Garcia, R., Giannobile, W. V., Graziani, F., Greenwell, H., Herrera, D., Kao, R. T., Kebschull, M., Kinane, D. F., Kirkwood, K. L., Kocher, T., Kornman, K. S., Kumar, P. S., Loos, B. G., … Tonetti, M. S. (2018). Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. Journal of Periodontology, 89 Suppl 1, S173–S182. https://doi.org/10.1002/JPER.17-0721
Patil, P. B., y Patil, B. R. (2011). Saliva: a diagnostic biomarker of periodontal diseases. Journal of Indian Society of Periodontology, 15(4), 310–317. https://doi.org/10.4103/0972-124X.92560
Pérez-Chaparro, P. J., Gonçalves, C., Figueiredo, L. C., Faveri, M., Lobão, E., Tamashiro, N., Duarte, P., y Feres, M. (2014). Newly identified pathogens associated with periodontitis: a systematic review. Journal of Dental Research, 93(9), 846–858. https://doi.org/10.1177/0022034514542468
Polak, D., Wilensky, A., Shapira, L., Halabi, A., Goldstein, D., Weiss, E. I., y Houri-Haddad, Y. (2009). Mouse model of experimental periodontitis induced by Porphyromonas gingivalis/Fusobacterium nucleatum infection: bone loss and host response. Journal of Clinical Periodontology, 36(5), 406–410. https://doi.org/10.1111/j.1600-051X.2009.01393.x
Qian, H., Yi, J., Zhou, J., Zhao, Y., Li, Y., Jin, Z., y Ding, Y. (2013). Activation of cannabinoid receptor CB2 regulates LPS-induced pro-inflammatory cytokine production and osteoclastogenic gene expression in human periodontal ligament cells. Open Journal of Stomatology, 3(1), 44–51, 2013. https://doi.org/10.4236/ojst.2013.31009
Raetz, C. R., y Whitfield, C. (2002). Lipopolysaccharide endotoxins. Annual Review of Biochemistry, 71, 635–700. https://doi.org/10.1146/annurev.biochem.71.110601.135414
Rogers, J. E., Li, F., Coatney, D. D., Rossa, C., Bronson, P., Krieder, J. M., Giannobile, W. V., y Kirkwood, K. L. (2007). Actinobacillus actinomycetemcomitans lipopolysaccharide-mediated experimental bone loss model for aggressive periodontitis. Journal of Periodontology, 78(3), 550–558. https://doi.org/10.1902/jop.2007.060321
Rojas, C., García, M. P., Polanco, A. F., González-Osuna, L., Sierra-Cristancho, A., Melgar-Rodríguez, S., Cafferata, E. A., y Vernal, R. (2021). Humanized mouse models for the study of periodontitis: an opportunity to elucidate unresolved aspects of its immunopathogenesis and analyze new immunotherapeutic strategies. Frontiers in Immunology, 12, 663328. https://doi.org/10.3389/fimmu.2021.663328
Romito, G. A., Feres, M., Gamonal, J., Gomez, M., Carvajal, P., Pannuti, C., Duque Duque, A., Romanelli, H., Rösing, C. K., Aranguiz Freyhofer, V., Cavagni, J., Fischer, R. G., Figueiredo, L., Carrer, F. C. A., Malheiros, Z., Stewart, B., Sanz, M., y Ryan, M. (2020). Periodontal disease and its impact on general health in Latin America: LAOHA Consensus Meeting Report. Brazilian Oral Research, 34(suppl 1), e027. https://doi.org/10.1590/1807-3107bor-2020.vol34.0027
Rovin, S., Costich, E. R., y Gordon, H. A. (1966). The influence of bacteria and irritation in the initiation of periodontal disease in germfree and conventional rats. Journal of Periodontal Research, 1(3), 193–204. https://doi.org/10.1111/j.1600-0765.1966.tb01860.x
Santana, J. B., Moraes, R. M., De Lima Zutin, E. A., De Fátima Santana Melo, G., Franco, G. C. N., y Anbinder, A. L. (2016). The ligature-induced periodontitis model: Literature overview and description of the technique. En Wallace, E. (ed). Periodontal disease: diagnosis, management options and clinical features. (pp. 23–46). Nova Biomedical. http://hdl.handle.net/11449/174864
Sharma, A., Inagaki, S., Honma, K., Sfintescu, C., Baker, P. J., y Evans, R. T. (2005). Tannerella forsythia-induced alveolar bone loss in mice involves leucine-rich-repeat BspA protein. Journal of Dental Research, 84(5), 462–467. https://doi.org/10.1177/154405910508400512
Shiba, F., Furusho, H., Takata, T., Shimizu, R., y Miyauchi, M. (2022). Equisetum arvense inhibits alveolar bone destruction in a rat model with Lipopolysaccharide (LPS)-Induced Periodontitis. International Journal of Dentistry, 2022, 7398924. https://doi.org/10.1155/2022/7398924
Souvannavong, V., Saidji, N., y Chaby, R. (2007). Lipopolysaccharide from Salmonella enterica activates NF-kappaB through both classical and alternative pathways in primary B Lymphocytes. Infection and Immunity, 75(10), 4998–5003. https://doi.org/10.1128/IAI.00545-07
Souza, D. M., Ricardo, L. H., Kantoski, K. Z., y Rocha, R. F. (2009). Influence of alcohol consumption on alveolar bone level associated with ligature-induced periodontitis in rats. Brazilian Oral Research, 23(3), 326–332. https://doi.org/10.1590/s1806-83242009000300017
Storrer, C. M., Aun, J. C., Pustiglioni, F. E., y Romito, G. A. (2010). Periodontal disease induced by Porphyromonas gingivalis and Fusobacterium nucleatum in Wistar rats. Arquivos em Odontologia, 46(4), 185-188. http://revodonto.bvsalud.org/pdf/aodo/v46n4/a01v46n4.pdf
Strober W. (2009). The multifaceted influence of the mucosal microflora on mucosal dendritic cell responses. Immunity, 31(3), 377–388. https://doi.org/10.1016/j.immuni.2009.09.001
Surkin, P. N., Ossola, C. Á., Mohn, C. E., Elverdin, J. C., y Fernández-Solari, J. (2014). Chronic alcohol consumption alters periodontal health in rats. Alcoholism, Clinical and Experimental Research, 38(7), 2001–2007. https://doi.org/10.1111/acer.12436
Suzuki, N., Yoneda, M., y Hirofuji, T. (2013). Mixed red-complex bacterial infection in periodontitis. International Journal of Dentistry, 2013, 587279. https://doi.org/10.1155/2013/587279
Tomina, D. C., Petruțiu, Ș. A., Dinu, C. M., Crișan, B., Cighi, V. S., y Rațiu, I. A. (2022). Comparative testing of two ligature-induced periodontitis models in rats: a clinical, histological and biochemical study. Biology, 11(5), 634. https://doi.org/10.3390/biology11050634
Ubios, A. M., Costa, O. R., y Cabrini, R. L. (1993). Early steps in bone resorption in experimental periodontitis: a histomorphometric study. Acta Odontológica Latinoamericana, 7(1), 45–50.
Vardar, S., Buduneli, E., Baylas, H., Berdeli, A. H., Buduneli, N., y Atilla, G. (2005). Individual and combined effects of selective cyclooxygenase-2 inhibitor and omega-3 fatty acid on endotoxin-induced periodontitis in rats. Journal of Periodontology, 76(1), 99–106. https://doi.org/10.1902/jop.2005.76.1.99
Verma, R. K., Rajapakse, S., Meka, A., Hamrick, C., Pola, S., Bhattacharyya, I., Nair, M., Wallet, S. M., Aukhil, I., y Kesavalu, L. (2010). Porphyromonas gingivalis and Treponema denticola mixed microbial infection in a rat model of periodontal disease. Interdisciplinary Perspectives on Infectious Diseases, 2010, 605125. https://doi.org/10.1155/2010/605125
Vignery, A., y Baron, R. (1980). Dynamic histomorphometry of alveolar bone remodeling in the adult rat. The Anatomical Record, 196(2), 191–200. https://doi.org/10.1002/ar.1091960210
Virto, L., Cano, P., Jiménez-Ortega, V., Fernández-Mateos, P., González, J., Esquifino, A. I., y Sanz, M. (2018). Obesity and periodontitis: An experimental study to evaluate periodontal and systemic effects of comorbidity. Journal of Periodontology, 89(2), 176–185. https://doi.org/10.1902/jop.2017.170355
Wang, P. L., Oido-Mori, M., Fujii, T., Kowashi, Y., Kikuchi, M., Suetsugu, Y., Tanaka, J., Azuma, Y., Shinohara, M., y Ohura, K. (2002). Effect of anti-CD14 antibody on experimental periodontitis induced by Porphyromonas gingivalis lipopolysaccharide. Japanese Journal of Pharmacology, 89(2), 176–183. https://doi.org/10.1254/jjp.89.176
Wang, C., Xu, T., Seneviratne, C. J., Ong, L. J. Y., y Zhou, Y. (2024). Modelling periodontitis in vitro: engineering strategies and biofilm model development. Frontiers in Biomaterial Sciences, 3, 1380153. https://doi.org/10.3389/fbiom.2024.1380153
Wichienrat, W., Surisaeng, T., Sa-Ard-Iam, N., Chanamuangkon, T., Mahanonda, R., y Wisitrasameewong, W. (2024). Alveolar bone loss in a ligature-induced periodontitis model in rat using different ligature sizes. European Journal of Dentistry, 18(3), 933–941. https://doi.org/10.1055/s-0044-1779426
Wilensky, A., Polak, D., Awawdi, S., Halabi, A., Shapira, L., y Houri-Haddad, Y. (2009). Strain-dependent activation of the mouse immune response is correlated with Porphyromonas gingivalis-induced experimental periodontitis. Journal of Clinical Periodontology, 36(11), 915–921. https://doi.org/10.1111/j.1600-051X.2009.01464.x
Yang, Y. J., Song, J. H., Yang, J. H., Kim, M. J., Kim, K. Y., Kim, J. K., Jin, Y. B., Kim, W. H., Kim, S., Kim, K. R., Park, K. I., y Lee, H. J. (2023). Anti-periodontitis effects of Dendropanax morbiferus H.Lév leaf extract on ligature-induced periodontitis in rats. Molecules, 28(2), 849. https://doi.org/10.3390/molecules28020849
Zhang, W., Ju, J., Rigney, T., y Tribble, G. (2014). Porphyromonas gingivalis infection increases osteoclastic bone resorption and osteoblastic bone formation in a periodontitis mouse model. BMC Oral Health, 14, 89. https://doi.org/10.1186/1472-6831-14-89
Zhang, X., Xu, M., Xue, Q., y He, Y. (2023). A modified method for constructing experimental rat periodontitis model. Frontiers in Bioengineering and Biotechnology, 10, 1098015. https://doi.org/10.3389/fbioe.2022.1098015
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Revista de la Facultad de Odontologia. Universidad de Buenos Aires

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.