Técnica de Apexificación con un Sustituto Bioactivo de la Dentina en una Sola Sesión

Caso Clínico

Autores/as

  • E P Consoli Lizzi Universidad de Buenos Aires. Facultad de Odontología. Cátedra de Endodoncia. Buenos Aires, Argentina.
  • P L Corominola Universidad de Buenos Aires. Facultad de Odontología. Cátedra de Endodoncia. Buenos Aires, Argentina.
  • P Martínez Universidad de Buenos Aires. Facultad de Odontología. Cátedra de Endodoncia. Buenos Aires, Argentina.
  • M L Nastri Universidad de Buenos Aires. Facultad de Odontología. Cátedra de Endodoncia. Buenos Aires, Argentina.
  • G A Rimaro Universidad de Buenos Aires. Facultad de Odontología. Cátedra de Endodoncia. Buenos Aires, Argentina.
  • P A Rodríguez Universidad de Buenos Aires. Facultad de Odontología. Cátedra de Endodoncia. Buenos Aires, Argentina.

Palabras clave:

apicoformación incompleta, necrosis pulpar, biocerámicos, biomateriales, técnica de apexificación

Resumen

Las piezas con necrosis pulpar y ápice abierto son un desafío de la práctica clínica endodóntica. Durante mucho tiempo estas piezas han sido tratadas con la técnica de apexificación con hidróxido de calcio. Esta técnica estimula la formación de una barrera calcificada a nivel apical, pero a partir de varias sesiones de tratamiento y los riesgos asociados que esto conlleva. Hoy en día, con el desarrollo de nuevas tecnologías, están a disposición materiales biocerámicos que permiten realizar el protocolo en una sola sesión. El Biodentine es un biocerámico con tiempo de fraguado corto y buena capacidad de sellado, que permite reducir los tiempos clínicos. El objetivo de este trabajo es presentar un caso clínico de una pieza dentaria diagnosticada con necrosis pulpar y con apicoformación incompleta, tratada con una técnica de apexificación con Biodentine en una sesión.

Citas

American Association of Endodontists. (2020). Glossary of endodontic terms. https://www.aae.org/specialty/clinical-resources/glossary-endodontic-terms/

Andreasen JO y Ravn JJ. (1972). Epidemiology of traumatic dental injuries to primary and permanent teeth in a Danish population sample. Int J Oral Surg, 1(5), 235–239. https://doi.org/10.1016/s0300-9785(72)80042-5

Andreasen JO, Farik B y Munksgaard EC. (2002). Long-term calcium hydroxide as a root canal dressing may increase risk of root fracture. Dent Traumatol, 18(3), 134–137. https://doi.org/10.1034/j.1600-9657.2002.00097.x

Bachoo IK, Seymour D y Brunton P. (2013). A biocompatible and bioactive replacement for dentine: is this a reality? The properties and uses of a novel calcium-based cement. Br Dent J, 214(2), E5. https://doi.org/10.1038/sj.bdj.2013.57

Bajwa NK, Jingarwar MM y Pathak A. (2015). Single visit apexification procedure of a traumatically injured tooth with a novel bioinductive material (Biodentine). Int J Clin Pediatr Dent, 8(1), 58–61. https://doi.org/10.5005/jp-journals-10005-1284

Bakland LK y Andreasen JO. (2012). Will mineral trioxide aggregate replace calcium hydroxide in treating pulpal and periodontal healing complications subsequent to dental trauma? A review. Dent Traumatol, 28(1), 25–32. https://doi.org/10.1111/j.1600-9657.2011.01049.x

Bhaskar SN. (1991). Orban’s oral histology and embryology. (11th ed.). (pp. 382). Mosby-Year Book.

Camilleri J. (2011). Scanning electron microscopic evaluation of the material interface of adjacent layers of dental materials. Dent Mater, 27(9), 870–878. https://doi.org/10.1016/j.dental.2011.04.013

Cvek M. (1992). Prognosis of luxated non-vital maxillary incisors treated with calcium hydroxide and filled with gutta-percha. A retrospective clinical study. Endod Dent Traumatol, 8(2), 45–55. https://doi.org/10.1111/j.1600-9657.1992.tb00228.x

Dominguez Reyes A, Muñoz Muñoz L y Aznar Martín T. (2005). Study of calcium hydroxide apexification in 26 young permanent incisors. Dent Traumatol, 21(3), 141–145. https://doi.org/10.1111/j.1600-9657.2005.00289.x

Eid AA, Komabayashi T, Watanabe E, Shiraishi T y Watanabe I. (2012). Characterization of the mineral trioxide aggregate-resin modified glass ionomer cement interface in different setting conditions. J Endod, 38(8), 1126–1129. https://doi.org/10.1016/j.joen.2012.04.013

Finucane D y Kinirons MJ. (1999). Non-vital immature permanent incisors: factors that may influence treatment outcome. Endod Dent Traumatol, 15(6), 273–277. https://doi.org/10.1111/j.1600-9657.1999.tb00787.x

Flanagan TA. (2014). What can cause the pulps of immature, permanent teeth with open apices to become necrotic and what treatment options are available for these teeth. Aust Endod J, 40(3), 95–100. https://doi.org/10.1111/aej.12087

Foreman PC y Barnes IE. (1990). Review of calcium hydroxide. Int Endod J, 23(6), 283–297. https://doi.org/10.1111/j.1365-2591.1990.tb00108.x

Frank AL. (1966). Therapy for the divergent pulpless tooth by continued apical formation. J Am Dent Assoc, 72(1), 87–93. https://doi.org/10.14219/jada.archive.1966.0017

Grech L, Mallia B y Camilleri J. (2013). Investigation of the physical properties of tricalcium silicate cement-based root-end filling materials. Dent Mater, 29(2), e20–e28. https://doi.org/10.1016/j.dental.2012.11.007

Hermann BW. (1920). Calciumhydroxyd als mittel zurn behandel und füllen vonxahnwurzelkanälen. [Tesis]. Würzburg.

Kaiser HJ. (1964). Management of wide-open canals with calcium hydroxide. 21st Annual Meeting of the American Association of Endodontists. Washington, DC. Apr.

Kaur M, Singh H, Dhillon JS, Batra M y Saini M. (2017). MTA versus Biodentine: review of literature with a comparative analysis. J Clin Diagn Res, 11(8), ZG01–ZG05. https://doi.org/10.7860/JCDR/2017/25840.10374

Kenchappa M, Gupta S, Gupta P y Sharma P. (2015). Dentine in a capsule: clinical case reports. J Indian Soc Pedod Prev Dent, 33(3), 250–254. https://doi.org/10.4103/0970-4388.160404

Khetarpal A, Chaudhary S, Talwar S y Verma M. (2014). Endodontic management of open apex using Biodentine as a novel apical matrix. Indian J Dent Res, 25(4), 513–516. https://doi.org/10.4103/0970-9290.142555

Malkondu Ö, Karapinar Kazandağ M y Kazazoğlu E. (2014). A review on biodentine, a contemporary dentine replacement and repair material. Biomed Res Int, 2014, 160951. https://doi.org/10.1155/2014/160951

Nayak G y Hasan MF. (2014). Biodentine-a novel dentinal substitute for single visit apexification. Restor Dent Endod, 39(2), 120–125. https://doi.org/10.5395/rde.2014.39.2.120

Parirokh M y Torabinejad M. (2010a). Mineral trioxide aggregate: a comprehensive literature review--Part I: chemical, physical, and antibacterial properties. J Endod, 36(1), 16–27. https://doi.org/10.1016/j.joen.2009.09.006

Parirokh M y Torabinejad M. (2010b). Mineral trioxide aggregate: a comprehensive literature review--Part III: Clinical applications, drawbacks, and mechanism of action. J Endod, 36(3), 400–413. https://doi.org/10.1016/j.joen.2009.09.009

Petersen PE y WHO Oral Health Programme. (‎2003)‎. The world oral health report 2003: continuous improvement of oral health in the 21st century - the approach of the WHO Global Oral Health Programme. https://www.who.int/oral_health/media/en/orh_report03_en.pdf

Raghavendra SS, Jadhav GR, Gathani KM y Kotadia P. (2017). Bioceramics in endodontics - a review. J Istanb Univ Fac Dent, 51(3 Suppl 1), S128–S137. https://doi.org/10.17096/jiufd.63659

Torabinejad M, Hong CU, McDonald F y Pitt Ford TR. (1995). Physical and chemical properties of a new root-end filling material. J Endod, 21(7), 349–353. https://doi.org/10.1016/S0099-2399(06)80967-2

Torabinejad M y Parirokh M. (2010). Mineral trioxide aggregate: a comprehensive literature review--part II: leakage and biocompatibility investigations. J Endod, 36(2), 190–202. https://doi.org/10.1016/j.joen.2009.09.010

Trope M. (2010). Treatment of the immature tooth with a non-vital pulp and apical periodontitis. Dent Clin North Am, 54(2), 313–324. https://doi.org/10.1016/j.cden.2009.12.006

Vanderweele RA, Schwartz SA y Beeson TJ. (2006). Effect of blood contamination on retention characteristics of MTA when mixed with different liquids. J Endod, 32(5), 421–424. https://doi.org/10.1016/j.joen.2005.09.007

Vidal K, Martin G, Lozano O, Salas M, Trigueros J y Aguilar G. (2016). Apical closure in apexification: a review and case report of apexification treatment of an immature permanent tooth with Biodentine. J Endod, 42(5), 730–734. https://doi.org/10.1016/j.joen.2016.02.007

Yazdizadeh M, Bouzarjomehri Z, Khalighinejad N y Sadri L. (2013). Evaluation of apical microleakage in open apex teeth using MTA apical plug in different sessions. ISRN Dent, 2013, 959813. https://doi.org/10.1155/2013/959813

Zanini M, Sautier JM, Berdal A y Simon S. (2012). Biodentine induces immortalized murine pulp cell differentiation into odontoblast-like cells and stimulates biomineralization. J Endod, 38(9), 1220–1226. https://doi.org/10.1016/j.joen.2012.04.018

Zerman N y Cavalleri G. (1993). Traumatic injuries to permanent incisors. Endod Dent Traumatol, 9(2), 61–64. https://doi.org/10.1111/j.1600-9657.1993.tb00661.x

Descargas

Publicado

2021-10-01

Cómo citar

Consoli Lizzi, E. P., Corominola, P. L., Martínez, P., Nastri, M. L., Rimaro, G. A., & Rodríguez, P. A. (2021). Técnica de Apexificación con un Sustituto Bioactivo de la Dentina en una Sola Sesión: Caso Clínico. Revista De La Facultad De Odontologia De La Universidad De Buenos Aires, 36(82), 43–48. Recuperado a partir de https://revista.odontologia.uba.ar/index.php/rfouba/article/view/77